表名和字段信息
课程表:
Course
c_id:课程编号
c_name:课程名称
t_id:教师编号
学生表:
Student
s_id:学号
s_name:姓名
s_birth:出生日期
s_sex:性别
教师表:
Teacher
t_id:教师编号
t_name:教师姓名
成绩表:
Score
s_id:学生编号
c_id:课程编号
s_score:分数
建表语句:
CREATE DATABASE sql50;
use sql50;
DROP TABLE IF EXISTS `Course`;
CREATE TABLE `Course` (
`c_id` varchar(20) NOT NULL,
`c_name` varchar(20) NOT NULL DEFAULT '',
`t_id` varchar(20) NOT NULL,
PRIMARY KEY (`c_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
insert into `Course`(`c_id`,`c_name`,`t_id`) values ('01','语文','02'),('02','数学','01'),('03','英语','03');
DROP TABLE IF EXISTS `Score`;
CREATE TABLE `Score` (
`s_id` varchar(20) NOT NULL,
`c_id` varchar(20) NOT NULL,
`s_score` int(3) DEFAULT NULL,
PRIMARY KEY (`s_id`,`c_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
insert into `Score`(`s_id`,`c_id`,`s_score`) values ('01','01',80),('01','02',90),('01','03',99),('02','01',70),('02','02',60),('02','03',80),('03','01',80),('03','02',80),('03','03',80),('04','01',50),('04','02',30),('04','03',20),('05','01',76),('05','02',87),('06','01',31),('06','03',34),('07','02',89),('07','03',98);
DROP TABLE IF EXISTS `Student`;
CREATE TABLE `Student` (
`s_id` varchar(20) NOT NULL,
`s_name` varchar(20) NOT NULL DEFAULT '',
`s_birth` varchar(20) NOT NULL DEFAULT '',
`s_sex` varchar(10) NOT NULL DEFAULT '',
PRIMARY KEY (`s_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
insert into `Student`(`s_id`,`s_name`,`s_birth`,`s_sex`) values ('01','赵雷','1990-01-01','男'),('02','钱电','1990-12-21','男'),('03','孙风','1990-05-20','男'),('04','李云','1990-08-06','男'),('05','周梅','1991-12-01','女'),('06','吴兰','1992-03-01','女'),('07','郑竹','1989-07-01','女'),('08','王菊','1990-01-20','女');
DROP TABLE IF EXISTS `Teacher`;
CREATE TABLE `Teacher` (
`t_id` varchar(20) NOT NULL,
`t_name` varchar(20) NOT NULL DEFAULT '',
PRIMARY KEY (`t_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
insert into `Teacher`(`t_id`,`t_name`) values ('01','张三'),('02','李四'),('03','王五');
连接
package SQL50
import java.util.Properties
import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}
object DF {
def main(args: Array[String]): Unit = {
val sparkSession: SparkSession = SparkSession
.builder()
.appName("DF_SQL50")
.master("local[*]")
.getOrCreate()
val url="jdbc:mysql://192.168.153.101:3306/sql50"
val user="root"
val pwd="okok"
val driver="com.mysql.jdbc.Driver"
val properties = new Properties()
properties.setProperty("user",user)
properties.setProperty("password",pwd)
properties.setProperty("driver",driver)
val scoreTable = "Score"
val courseTable = "Course"
val studentTable = "Student"
val teacherTable = "Teacher"
val scoreTableDF: DataFrame = sparkSession.read.jdbc(url,scoreTable,properties)
val courseTableDF: DataFrame = sparkSession.read.jdbc(url,courseTable,properties)
val studentTableDF: DataFrame = sparkSession.read.jdbc(url,studentTable,properties)
val teacherTableDF: DataFrame = sparkSession.read.jdbc(url,teacherTable,properties)
import sparkSession.implicits._
import org.apache.spark.sql.functions._
}
}
题目
1、查询"01"课程比"02"课程成绩高的学生的信息及课程分数
val frame: DataFrame = scoreTableDF.join(scoreTableDF,"s_id")
frame.show()
val ds: Dataset[Row] = frame.filter(x => (x.get(1).equals("01")
&& x.get(3).equals("02")
&& (x.get(2).asInstanceOf[Integer] > x.get(4).asInstanceOf[Integer])))
ds.show()
val ds2: DataFrame = ds.join(studentTableDF,"s_id")
ds2.show()
2、查询"01"课程比"02"课程成绩低的学生的信息及课程分数
val frame2: DataFrame = scoreTableDF.as("s1").join(scoreTableDF.as("s2"),"s_id")
frame2.show()
val frame3: DataFrame = frame2.filter("s1.c_id=01 and s2.c_id=02 and s1.s_score<s2.s_score")
.join(studentTableDF, "s_id")
frame3.show
3、查询平均成绩大于等于60分的同学的学生编号和学生姓名和平均成绩
val value: Dataset[Row] = scoreTableDF
.groupBy("s_id")
.avg("s_score")
.join(studentTableDF, "s_id")
.filter($"avg(s_score)" >= 60)
value.show()
4、查询平均成绩小于60分的同学的学生编号和学生姓名和平均成绩:(包括有成绩的和无成绩的)
val unit: Dataset[Row] = studentTableDF.join(scoreTableDF.groupBy("s_id").avg("s_score"), Seq("s_id"), "left_outer")
.where($"avg(s_score)" < 60 || $"avg(s_score)".isNull)
unit.show()
5、查询所有同学的学生编号、学生姓名、选课总数、所有课程的总成绩
val frame: DataFrame = studentTableDF.join(scoreTableDF.groupBy("s_id").count(), Seq("s_id"), "left_outer")
.join(scoreTableDF.groupBy("s_id").sum(), Seq("s_id"), "left_outer")
frame.show()
6、查询"李"姓老师的数量
val frame6: Long = teacherTableDF.where("t_name like '李%'").count()
println(frame6)
7、查询学过"张三"老师授课的同学的信息
val frame7: DataFrame = scoreTableDF.join(courseTableDF, "c_id")
.join(teacherTableDF, "t_id")
.where("t_name='张三'")
.join(studentTableDF, "s_id")
frame7.show()
8、查询没学过"张三"老师授课的同学的信息
scoreTableDF
.join(courseTableDF,"c_id")
.join(teacherTableDF,"t_id")
.join(studentTableDF,"s_id")
.createTempView("aa")
sparkSession.sql("select * from aa where t_name !='张三'").show()
9、查询学过编号为"01"并且也学过编号为"02"的课程的同学的信息
studentTableDF
.join(scoreTableDF.filter("c_id=01"),"s_id")
.join(scoreTableDF.filter("c_id=02"),"s_id")
.show()
10、查询学过编号为"01"但是没有学过编号为"02"的课程的同学的信息
val frame: DataFrame = studentTableDF
.join(scoreTableDF.filter("c_id = 01"), "s_id")
.join(scoreTableDF.filter("c_id != 02"), "s_id")
val unit: Dataset[Row] = frame.filter(x=>(x.get(5) != x.get(7)))
unit.show()
11、查询没有学全所有课程的同学的信息
studentTableDF
.join(scoreTableDF,Seq("s_id"),"left_outer")
.groupBy("s_id")
.count()
.where("count != 3")
.join(studentTableDF,"s_id")
.show()
.12、查询至少有一门课与学号为"01"的同学所学相同的同学的信息
scoreTableDF
.join(scoreTableDF.select("c_id").where("s_id=01"),"c_id")
.select("s_id")
.distinct()
.where("s_id != 01")
.join(studentTableDF,"s_id")
.show()
13、查询和"01"号的同学学习的课程完全相同的其他同学的信息
//scoreTableDF.select("c_id").where("s_id=1").show()
scoreTableDF
.join(scoreTableDF.select("c_id").where("s_id=1"),"c_id")
.groupBy("s_id")
.count()
.where(s"count=${scoreTableDF.where("s_id=1").count()} and s_id !=1")
.join(studentTableDF,"s_id")
.show()
14、查询没学过"张三"老师讲授的任一门课程的学生姓名
studentTableDF.join(
scoreTableDF.join(
courseTableDF.join(teacherTableDF,"t_id").where("t_name='张三'"),
"c_id").select("s_id","t_name"),
Seq("s_id"),"left_outer"
).where("t_name is null").show()
15、查询两门及其以上不及格课程的同学的学号,姓名及其平均成绩
scoreTableDF
.where("s_score<60")
.groupBy("s_id")
.count()
.where("count>=2")
.join(scoreTableDF,"s_id")
.groupBy("s_id")
.avg("s_score")
.join(studentTableDF,"s_id")
.show()
16、检索"01"课程分数小于60,按分数降序排列的学生信息
scoreTableDF
.where("s_score<60 and c_id=1")
.join(studentTableDF,"s_id")
.orderBy(desc("s_score"))
.show()
17、按平均成绩从高到低显示所有学生的所有课程的成绩以及平均成绩
scoreTableDF
.join(scoreTableDF.groupBy("s_id").avg("s_score"),Seq("s_id"),"left_outer")
.join(studentTableDF,"s_id")
.orderBy($"avg(s_score)".desc)
.show()
18、查询各科成绩最高分、最低分和平均分:以如下形式显示:课程ID,课程name,最高分,最低分,平均分,及格率,中等率,优良率,优秀率
val jige = scoreTableDF.rdd.map(x=>{if(x.getAs("s_score").toString.toInt > 60) (x(1).toString,1) else (x(1).toString,0)}).reduceByKey(_+_).toDF("c_id","jige")
val zhongdeng = scoreTableDF.rdd.map(x=>{if(x.getAs("s_score").toString.toInt > 70) (x(1).toString,1) else (x(1).toString,0)}).reduceByKey(_+_).toDF("c_id","zhongdeng")
val youliang = scoreTableDF.rdd.map(x=>{if(x.getAs("s_score").toString.toInt > 80) (x(1).toString,1) else (x(1).toString,0)}).reduceByKey(_+_).toDF("c_id","youliang")
val youxiu = scoreTableDF.rdd.map(x=>{if(x.getAs("s_score").toString.toInt > 90) (x(1).toString,1) else (x(1).toString,0)}).reduceByKey(_+_).toDF("c_id","youxiu")
val s1 = scoreTableDF.groupBy("c_id").agg("s_score"->"max","s_score"->"min","s_score"->"avg","s_score"->"count")
val frame18: DataFrame = s1.join(jige,"c_id").join(zhongdeng,"c_id").join(youliang,"c_id").join(youxiu,"c_id").withColumn("jgl",$"jige"/$"count(s_score)").withColumn("zdl",$"zhongdeng"/$"count(s_score)").withColumn("yll",$"youliang"/$"count(s_score)").withColumn("yxl",$"youxiu"/$"count(s_score)").drop("jige","zhongdeng","youliang","youxiu")
frame18.show()
19、按各科成绩进行排序,并显示排名
scoreTableDF
.join(studentTableDF,"s_id")
.selectExpr("*","row_number() over(partition by c_id order by s_score desc) rank")
.show()
20、查询学生的总成绩并进行排名
scoreTableDF.selectExpr("*","sum(s_score) over(partition by s_id) as sum_score")
.drop("s_score","c_id")
.distinct()
.selectExpr("*","row_number() over(order by sum_score) as rank")
.show()
21、查询不同老师所教不同课程平均分从高到低显示:
scoreTableDF
.groupBy("c_id")
.avg("s_score")
.join(
courseTableDF.join(teacherTableDF,"t_id"),"c_id")
.show()
22、查询所有课程的成绩第2名到第3名的学生信息及该课程成绩
scoreTableDF
.selectExpr("*","row_number() over(partition by c_id order by s_score) as rank")
.filter(x=>x.get(3).asInstanceOf[Integer] == 2 || x.get(3).asInstanceOf[Integer] == 3)
.join(studentTableDF,"s_id")
.show()
23.统计各科成绩各分数段人数:课程编号,课程名称,[100-85],[85-70],[70-60],[0-60]及所占百分比
val fenduan: DataFrame = scoreTableDF.rdd.map(x => {
if (x.getAs("s_score").toString.toInt < 60) (x(1).toString, 1)
else if (x.getAs("s_score").toString.toInt < 70) (x(1).toString, 2)
else if (x.getAs("s_score").toString.toInt < 85) (x(1).toString, 3)
else (x(1).toString, 4)
}).toDF("c_id", "fenduan")
fenduan.groupBy("c_id").count.as("f1")
.join(fenduan.groupBy("c_id","fenduan").count.as("f2"),"c_id")
.withColumn("rate",$"f2.count"/$"f1.count")
.drop($"f1.count")
.join(courseTableDF,"c_id")
.show()
24、查询学生平均成绩及其名次
scoreTableDF
.groupBy("s_id")
.avg("s_score")
.selectExpr("*",s"row_number() over(order by 'avg(s_score)')")
.show()
25、查询各科成绩前三名的记录
scoreTableDF
.selectExpr("*","row_number() over(partition by c_id order by s_score desc) num")
.where("num<=3")
.show()
26、查询每门课程被选修的学生数
scoreTableDF.groupBy("c_id").count().show()
27、查询出只有两门课程的全部学生的学号和姓名
scoreTableDF
.groupBy("s_id")
.count()
.where("count=2")
.join(studentTableDF,"s_id")
.show()
28、查询男生、女生人数
studentTableDF.groupBy("s_sex").count().show()
29、查询名字中含有"风"字的学生信息
studentTableDF.where("s_name like '%风%'").show()
30、查询同名同姓学生名单,并统计同名人数
studentTableDF.groupBy("s_name").count().where("count>1").show()
31、查询1990年出生的学生名单
studentTableDF.where("year(s_birth)=1990").show()
32、查询每门课程的平均成绩,结果按平均成绩降序排列,平均成绩相同时,按课程编号升序排列
scoreTableDF.groupBy("c_id").avg("s_score").orderBy(desc("avg(s_score)"),asc("c_id")).show()
33、查询平均成绩大于等于85的所有学生的学号、姓名和平均成绩:
scoreTableDF
.groupBy("s_id")
.avg("s_score")
.where("avg(s_score) >= 85")
.join(studentTableDF,"s_id")
.show()
34、查询课程名称为"数学",且分数低于60的学生姓名和分数:
scoreTableDF
.join(courseTableDF,"c_id")
.where("s_score < 60 and c_name='数学'")
.join(studentTableDF,"s_id")
.show()
35、查询所有学生的课程及分数情况:
scoreTableDF
.join(studentTableDF,"s_id")
.join(courseTableDF,"c_id")
.show()
36.查询任何一门课程成绩在70分以上的姓名、课程名称和分数;
scoreTableDF
.where("s_score>70")
.join(studentTableDF,"s_id")
.join(courseTableDF,"c_id")
.show()
37.查询不及格的课程
scoreTableDF.where("s_score<60").join(studentTableDF,"s_id").show()
38.查询课程编号为01且课程成绩在80分以上的学生的学号和姓名;
scoreTableDF.where("c_id=1 and s_score>=80").join(studentTableDF,"s_id").show()
39.求每门课程的学生人数
scoreTableDF.groupBy("c_id").count().show()
40、查询选修"张三"老师所授课程的学生中,成绩最高的学生信息及其成绩
scoreTableDF
.join(courseTableDF.join(teacherTableDF,"t_id"),"c_id")
.where("t_name='张三'")
.orderBy("s_score")
.limit(1)
.join(studentTableDF,"s_id")
.show()
41、查询不同课程成绩相同的学生的学生编号、课程编号、学生成绩
scoreTableDF.as("s1")
.join(scoreTableDF.as("s2"),"s_id")
.where("s1.s_score = s2.s_score and s1.c_id != s2.c_id")
.show()
42、查询每门功成绩最好的前两名
scoreTableDF
.selectExpr("*","row_number() over(partition by c_id order by s_score desc) as rank")
.where("rank <= 2")
.join(studentTableDF,"s_id")
.show()
43、统计每门课程的学生选修人数(超过5人的课程才统计)。要求输出课程号和选修人数,查询结果按人数降序排列,若人数相同,按课程号升序排列
scoreTableDF
.groupBy("c_id")
.count()
.where("count>5")
.orderBy($"count".desc)
.orderBy("c_id")
.show()
44、检索至少选修两门课程的学生学号
scoreTableDF.groupBy("s_id").count().where("count>2").drop("count").show()
45、查询选修了全部课程的学生信息
scoreTableDF
.groupBy("s_id")
.count()
.where(s"count = ${courseTableDF.count()}")
.join(studentTableDF,"s_id")
.show()
46、查询各学生的年龄
studentTableDF.selectExpr("*","year(current_date)-year(s_birth)").show()
47、查询本周过生日的学生
unix_timestamp(current_date()) // 当前时间
cast( concat_ws('-',date_format(current_date(),'yyyy'),date_format(s_birth,'MM'),date_format(s_birth,'dd')) as date ),'yyyy-MM-dd') 将s_birth改成当前年份
studentTableDF
.where(" unix_timestamp( cast( concat_ws('-',date_format(current_date(),'yyyy'),date_format(s_birth,'MM'),date_format(s_birth,'dd') ) as date ),'yyyy-MM-dd') between unix_timestamp(current_date()) and unix_timestamp(date_sub(next_day(current_date(),'MON'),1),'yyyy-MM-dd') ").show()
48、查询下周过生日的学生
unix_timestamp(date_sub(next_day(current_date(),'MON'),1),'yyyy-MM-dd') 下周一
unix_timestamp(date_add(next_day(current_date(),'MON'),6),'yyyy-MM-dd') 下周末
studentTableDF
.where(" unix_timestamp( cast( concat_ws('-',date_format(current_date(),'yyyy'),date_format(s_birth,'MM'),date_format(s_birth,'dd') ) as date ),'yyyy-MM-dd') between unix_timestamp(date_sub(next_day(current_date(),'MON'),1),'yyyy-MM-dd') and unix_timestamp(date_add(next_day(current_date(),'MON'),6),'yyyy-MM-dd') ").show()
49、查询本月过生日的学生
studentTableDF.where("month(s_birth)=month( current_date() )").show()
50、查询下月过生日的学生
studentTableDF.where("month(s_birth)=month( current_date() ) +1 ").show()
50、查询12月份过生日的学生
studentTableDF.where("month(s_birth)=12").show()