数据中毒文献阅读笔记(更新至12.27)

凸多面体 Transferable Clean-Label Poisoning Attacks on Deep Neural Nets

深度神经网络需要用于训练和超参数调整的大型数据集。许多从业者将网络作为数据源,可以在几乎没有人为监督的情况下自动抓取大型数据集。不幸的是,最近的研究结果表明,这些数据采集过程可能会导致安全漏洞。

特别是,从不可信的来源检索数据会使模型容易受到数据中毒攻击,其中攻击者将恶意编制的示例注入训练集中,以劫持模型并控制其行为。

清洁标签中毒攻击与其他中毒攻击不同,关键在于:它们不要求用户控制标签过程。这种攻击为一种独特的威胁模型打开了大门,在这种模型中,攻击者只需将恶意图像放在网络上,等待网络抓取机器人、社交媒体平台运营商或其他毫无戒心的受害者获取,就可以毒害数据集。然后由人类标签员对毒药进行适当分类,并在培训期间使用。此外,有针对性的干净标签攻击并不会不加区分地降低测试准确性,而是针对特定示例的错误分类,从而使攻击的存在无法通过观察整体模型性能来检测。

白盒环境:攻击者对受害者模型有完全的了解,并在制作毒药的过程中使用这些知识。

黑盒攻击(可转移的中毒攻击):攻击者对受害者模型不了解。

特征碰撞

攻击者从目标类中选择一个基本示例xb来制作毒物xp,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值