机器学习 ❀ 数据投毒攻击(数据投毒 / 模型投毒) 隐私攻击(数据隐私 / 模型隐私)

数据投毒攻击

        数据投毒(会使模型整体的准确率降低)

                标签反转攻击:改变样本的标签(给样本使用我们规定的标签

                干净标签攻击:改变样本的输入(将样本的内容修改,标签不变

        模型投毒

                后门攻击:通过改变模型对一些特定输入的输出而达到目的,在图像分类的领域中,后门攻击的trigger(触发器)是图像当中的一些像素点,当这些像素点经过模型被计算成某些值之后,模型可能就会产生我们想要的结果,这就达到了我们的目的。

                注意:后门攻击不会影响模型整体的准确率

                后门攻击是将毒化后的数据集打上对应的标签然后放到模型中进行训练,随后得到一个被植入后门的模型,然后我们将毒化的数据集放入模型时就会输出我们想要的结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值