数学分析/微积分
分享数学分析与微积分知识(结合信号与系统)。
DC-ML
大学生,有问题就交流吧。。。
展开
-
幂级数
原创 2020-05-28 16:02:30 · 246 阅读 · 0 评论 -
数项级数
数项级数的基本概念1.定义:∑n=1∞un=u1+u2+...+un+...\sum_{n=1}^{\infty}u_n=u_1+u_2+...+u_n+...n=1∑∞un=u1+u2+...+un+...2.部分和:Sn=∑k=1nuk=u1+u2+...+unS_n=\sum_{k=1}^nu_k=u_1+u_2+...+u_nSn=k=1∑nuk=u1+u2+...+un3.收敛与发散:∑n=1∞un=limn→∞Sn=limn→∞(u1+u2+...+un)=.原创 2020-05-23 23:46:59 · 2073 阅读 · 0 评论 -
反常积分
反常积分概念将有限区间推广到无限区间上的积分------无穷积分;将函数从有界推广到无界得到无界函数在有限区间上的积分—暇积分无穷积分和暇积分统称为反常积分① 无穷积分∫a+∞f(x)dx=limu→+∞∫auf(x)dx\int_a^{+\infty}f(x)\mathrm dx=\lim\limits_{u\to+\infty} \int_a^u f(x)\mathrm dx∫a+∞f(x)dx=u→+∞lim∫auf(x)dx ② 暇积分(暇点为 a)暇点:如原创 2020-05-20 22:55:44 · 987 阅读 · 0 评论 -
积分学在几何中的应用举例(3)
1、直角坐标系曲线y=f(x),a≤x≤by=f(x),a\le x\le by=f(x),a≤x≤b,其弧长s=∫ab1+[f′2(x)]s=\int_a^b \sqrt{1+[f'^2(x)]}s=∫ab1+[f′2(x)] 2、参数方程曲线x=x(t),y=y(t),α≤t≤βx=x(t),y=y(t),\alpha\le t \le\betax=x(t),y=y(t),α≤t≤β,其弧长:s=∫αβx′2(t)+y′2(t)dts=\int_\alpha^\beta \s原创 2020-05-20 16:40:51 · 275 阅读 · 0 评论 -
积分学在几何中的应用举例(2)
体积平行截面面积已知的立体的体积:空间立体介于垂直于x 轴的两个平面x=a与x=b(a<b)之间,用垂直于x轴的平面去截立体,若所得截面面积是关于x的已知连续函数S(x),立体的体积为 :V=∫abf(x)dxV=\int_a^b f(x) \mathrm d xV=∫abf(x)dx.旋转体体积1.:由连续曲线 y=f(x)(f(x)≥0\ge0≥0)和直线 x=a,x=b(a<b) 及 y=0所围成的平面图形绕x轴旋转一周所成旋转体的体积为:V=π∫abf2(x)dxV=\p原创 2020-05-20 15:47:23 · 481 阅读 · 0 评论 -
积分学在几何中的应用举例(1)
1.平面图形的面积(1)直角坐标系下的面积公式(2)极坐标系下的面积公式(3)参数方程下的面积公式原创 2020-05-19 16:56:46 · 690 阅读 · 0 评论 -
第二类Euler积分的一个简单例子(递归)
求此广义积分∫0+∞xne−xdx(x∈N∗)。\int_0^{+\infty} x^ne^{-x}\mathrm dx(x\in\mathbb{N}^*)。∫0+∞xne−xdx(x∈N∗)。1.求出递归公式:∫0+∞xne−xdx(x∈N∗)=−xex∣0∞+n∫0+∞xn−1e−xdx=n∫0+∞xn−1e−xdx\int_0^{+\infty} x^ne^{-x}\mathrm dx(x\in\mathbb{N}^*)\\=-xe^x\big|_0^\infty+n\int_0^{+\inf原创 2020-05-18 10:53:20 · 726 阅读 · 0 评论 -
抽样函数sint/t反常求积分
抽样函数Sa(t)=sinttSa(t)= \frac{sint}{t}Sa(t)=tsint不可积(原函数不可用简单的基本函数表示),下面就介绍怎么求它的反常积分。设I(x)=∫0∞e−xtsinttdtI(x)=\int_0^{\infty}e^{-xt}\frac{sint}{t} \mathrm{d}tI(x)=∫0∞e−xttsintdtI′(x)=∫0∞e−xtdcost...原创 2020-04-28 11:55:43 · 20976 阅读 · 0 评论