反常积分

反常积分概念

将有限区间推广到无限区间上的积分------无穷积分;
将函数从有界推广到无界得到无界函数在有限区间上的积分—暇积分
无穷积分和暇积分统称为反常积分
① 无穷积分
∫ a + ∞ f ( x ) d x = lim ⁡ u → + ∞ ∫ a u f ( x ) d x \int_a^{+\infty}f(x)\mathrm dx=\lim\limits_{u\to+\infty} \int_a^u f(x)\mathrm dx a+f(x)dx=u+limauf(x)dx   
② 暇积分(暇点为 a)
暇点:如果函数 f(x)在点 a 的任一邻域内都无界,那么点 a 称为函数f(x)的暇点,也称为无界间断点。
  ∫ a b f ( x ) d x = lim ⁡ u → a + ∫ u b f ( x ) d x = lim ⁡ η → 0 + ∫ a + η b f ( x ) d x \int_a^b f(x) \mathrm dx=\lim\limits_{u\to a^+}\int_u^b f(x) \mathrm dx=\lim\limits_{\eta\to0^+}\int_{a+\eta}^b f(x) \mathrm dx abf(x)dx=ua+limubf(x)dx=η0+lima+ηbf(x)dx
 

反常积分性质

无穷积分的性质

1.柯西收敛准则:
∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)\mathrm dx a+f(x)dx收敛 ⟺ ∀ ϵ > 0 , ∃ G > a , ∀ u 1 , u 2 > G , \Longleftrightarrow \forall\epsilon>0,\exists G>a,\forall u_1,u_2>G, ϵ>0,G>a,u1,u2>G, ∣ ∫ u 1 u 2 f ( x ) d x ∣ < ϵ . |\int_{u_1}^{u_2}f(x)\mathrm dx|<\epsilon. u1u2f(x)dx<ϵ.
2.线性性质:
∫ a + ∞ k 1 f 1 ( x ) + k 2 f 2 ( x ) d x = k 1 ∫ a + ∞ f 1 ( x ) d x + k 2 ∫ a + ∞ f 2 ( x ) d x \int_a^{+\infty} k_1f_1(x)+k_2f_2(x) \mathrm dx=k_1\int_a^{+\infty}f_1(x)\mathrm dx+k_2\int_a^{+\infty}f_2(x)\mathrm dx a+k1f1(x)+k2f2(x)dx=k1a+f1(x)dx+k2a+f2(x)dx
3.区域可加性
∀ b > a , ∫ a + ∞ f ( x ) d x = ∫ a b f ( x ) d x + ∫ b + ∞ f ( x ) d x \forall b>a,\int_a^{+\infty}f(x)\mathrm dx=\int_a^bf(x) \mathrm dx+\int_b^{+\infty}f(x)\mathrm dx b>a,a+f(x)dx=abf(x)dx+b+f(x)dx
4.绝对收敛
∫ a + ∞ ∣ f ( x ) ∣ d x \int_a^{+\infty}|f(x)|\mathrm dx a+f(x)dx收敛 ⇒ ∫ a + ∞ f ( x ) d x \Rightarrow\int_a^{+\infty}f(x) \mathrm dx a+f(x)dx收敛, ∣ ∫ a + ∞ f ( x ) d x ∣ ≤ ∫ a + ∞ ∣ f ( x ) ∣ d x |\int_a^{+\infty}f(x)\mathrm dx|\le\int_a^{+\infty}|f(x)|\mathrm dx a+f(x)dxa+f(x)dx

暇积分的性质

1.柯西收敛准则:
∫ a b f ( x ) d x \int_a^{b}f(x)\mathrm dx abf(x)dx收敛 ⟺ ∀ ϵ > 0 , ∃ G > a , ∀ u 1 , u 2 > G , \Longleftrightarrow \forall\epsilon>0,\exists G>a,\forall u_1,u_2>G, ϵ>0,G>a,u1,u2>G, ∣ ∫ u 1 u 2 f ( x ) d x ∣ < ϵ . |\int_{u_1}^{u_2}f(x)\mathrm dx|<\epsilon. u1u2f(x)dx<ϵ.
2.线性性质:
∫ a b k 1 f 1 ( x ) + k 2 f 2 ( x ) d x = k 1 ∫ a b f 1 ( x ) d x + k 2 ∫ a b f 2 ( x ) d x \int_a^{b} k_1f_1(x)+k_2f_2(x) \mathrm dx=k_1\int_a^{b}f_1(x)\mathrm dx+k_2\int_a^{b}f_2(x)\mathrm dx abk1f1(x)+k2f2(x)dx=k1abf1(x)dx+k2abf2(x)dx
3.区域可加性
∀ b > a , ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \forall b>a,\int_a^{b}f(x)\mathrm dx=\int_a^cf(x) \mathrm dx+\int_c^{b}f(x)\mathrm dx b>a,abf(x)dx=acf(x)dx+cbf(x)dx
4.绝对收敛
∫ a b ∣ f ( x ) ∣ d x \int_a^{b}|f(x)|\mathrm dx abf(x)dx收敛 ⇒ ∫ a b f ( x ) d x \Rightarrow\int_a^{b}f(x) \mathrm dx abf(x)dx收敛, ∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x |\int_a^{b}f(x)\mathrm dx|\le\int_a^{b}|f(x)|\mathrm dx abf(x)dxabf(x)dx

反常积分的收敛判别法则

  1. 无穷积分的收敛判别
    (1) 比较判别法:
    ∣ f ( x ) ∣ ≤ g ( x ) , x ∈ [ a . + ∞ ) |f(x)|\le g(x),x\in[a.+\infty) f(x)g(x),x[a.+),则 ∫ a + ∞ g ( x ) d x \int_a^{+\infty}g(x)\mathrm dx a+g(x)dx收敛 ⇒ ∫ a + ∞ ∣ f ( x ) ∣ \Rightarrow\int_a^{+\infty}|f(x)| a+f(x)收敛; ∫ a + ∞ ∣ f ( x ) ∣ \int_a^{+\infty}|f(x)| a+f(x)发散 ⇒ ∫ a + ∞ g ( x ) d x \Rightarrow\int_a^{+\infty}g(x)\mathrm dx a+g(x)dx发散。
    (2)比较判别法的极限形式
    g ( x ) > 0 , lim ⁡ x → + ∞ ∣ f ( x ) ∣ g ( x ) = c g(x)>0,\lim\limits_{x\to {+\infty}}\frac{|f(x)|}{g(x)}=c g(x)>0,x+limg(x)f(x)=c,则
    0 < c < + ∞ 0<c<+\infty 0<c<+时, ∫ a + ∞ g ( x ) d x \int_a^{+\infty}g(x)\mathrm dx a+g(x)dx ∫ a + ∞ ∣ f ( x ) ∣ \int_a^{+\infty}|f(x)| a+f(x)同敛散;
    c = 0 c=0 c=0, ∫ a + ∞ g ( x ) d x \int_a^{+\infty}g(x)\mathrm dx a+g(x)dx收敛 ⇒ ∫ a + ∞ ∣ f ( x ) ∣ \Rightarrow\int_a^{+\infty}|f(x)| a+f(x)收敛;
    c = + ∞ c=+\infty c=+ ∫ a + ∞ g ( x ) d x \int_a^{+\infty}g(x)\mathrm dx a+g(x)dx发散 ⇒ ∫ a + ∞ ∣ f ( x ) ∣ \Rightarrow\int_a^{+\infty}|f(x)| a+f(x)发散。
    (3)柯西判别法的极限形式
    f ( x ) f(x) f(x)是非负函数, lim ⁡ x → + ∞ x p f ( x ) = λ \lim\limits_{x\to{+\infty}}x^pf(x)=\lambda x+limxpf(x)=λ
    p > 1 p>1 p>1 0 ≤ λ < + ∞ 0\le\lambda<+\infty 0λ<+时, ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)\mathrm dx a+f(x)dx收敛;
    p ≤ 1 p\le1 p1 0 < λ ≤ + ∞ 0<\lambda\le+\infty 0<λ+时, ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)\mathrm dx a+f(x)dx发散。
    (4)狄利克雷判别法
    (5)阿贝尔判别法
    2.瑕积分的收敛判别
    (1) 比较判别法:
    ∣ f ( x ) ∣ ≤ g ( x ) |f(x)|\le g(x) f(x)g(x),则 ∫ a b g ( x ) d x \int_a^bg(x)\mathrm dx abg(x)dx收敛 ⇒ ∫ a b ∣ f ( x ) ∣ \Rightarrow\int_a^b|f(x)| abf(x)收敛; ∫ a b f ( x ) ∣ \int_a^bf(x)| abf(x)发散 ⇒ ∫ a b g ( x ) d x \Rightarrow\int_a^bg(x)\mathrm dx abg(x)dx发散。
    (2)比较判别法的极限形式
    g ( x ) > 0 , lim ⁡ x → a + ∣ f ( x ) ∣ g ( x ) = c g(x)>0,\lim\limits_{x\to {a^+}}\frac{|f(x)|}{g(x)}=c g(x)>0,xa+limg(x)f(x)=c,则
    0 < c < + ∞ 0<c<+\infty 0<c<+时, ∫ a b g ( x ) d x \int_a^bg(x)\mathrm dx abg(x)dx ∫ a b ∣ f ( x ) ∣ \int_a^b|f(x)| abf(x)同敛散;
    c = 0 c=0 c=0, ∫ a b g ( x ) d x \int_a^bg(x)\mathrm dx abg(x)dx收敛 ⇒ ∫ a b ∣ f ( x ) ∣ \Rightarrow\int_a^b|f(x)| abf(x)收敛;
    c = + ∞ c=+\infty c=+ ∫ a b g ( x ) d x \int_a^bg(x)\mathrm dx abg(x)dx发散 ⇒ ∫ a b ∣ f ( x ) ∣ \Rightarrow\int_a^b|f(x)| abf(x)发散。
    (3)柯西判别法的极限形式
    f ( x ) f(x) f(x)是非负函数, lim ⁡ x → + ∞ x p f ( x ) = λ \lim\limits_{x\to{+\infty}}x^pf(x)=\lambda x+limxpf(x)=λ
    p > 1 p>1 p>1 0 ≤ λ < + ∞ 0\le\lambda<+\infty 0λ<+时, ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)\mathrm dx a+f(x)dx收敛;
    p ≤ 1 p\le1 p1 0 < λ ≤ + ∞ 0<\lambda\le+\infty 0<λ+时, ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)\mathrm dx a+f(x)dx发散。
  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值