Pytroch
一看就会,上手就废
这个作者很懒,什么都没留下…
展开
-
Pytorch学习4 nn.module容器
nn.module中容器可以存储一段网络结构,方便重复使用。容器一般有三种构建方法nn.Sequetail :按顺序包装多个网络层nn.Modulelist: 像python中list一样包装多个网络层,可以像列表一样迭代nn.Muduledict: 像python中dict一样包装多个网络层,给每个网络层加上名称# sequetailclass lenet_sequetail(nn.module): def __init__(self, classes): super(lenet_s原创 2020-05-17 18:17:51 · 242 阅读 · 0 评论 -
Pytorch笔记3 :nn.model()类
nn.model()类在学习nn.model()类之前,先简要了解一下nn。nn主要有四个模块nn.Parameter: 一个张量的子类,用于表示可学习的参数 w, bnn.Module: 网络层的基类,用于管理网络的属性,LeNet是一个module类,LeNet的子模块例如conv2,也是一个nn.module类nn.functional:用于函数的实现,比如卷积运算,加法运算nn.__init__:参数初始化方法nn.Module()类的主要属性parameter : 用于存储和原创 2020-05-17 13:02:45 · 3575 阅读 · 0 评论 -
Pytorch学习 model类
model是如何作用的model的两个要素1.构建子模块: model的初始化函数 init(),要使用supper调用nn.model类,在初始化函数中我们构建子模块。2. 拼接子模块: model 的 forward函数中我们用子模块构建计算图,返回计算结果在model类的引用处设置断点步入leNet中进入定义leNet的model文件中:模型构建第一个要素,构建子模块,就是在model文件,继承nn.model()类的自定义类中的__init__()中构建,在实例化阶段只会调用模型的原创 2020-05-17 12:40:53 · 7454 阅读 · 1 评论 -
Pytorch学习笔记(1)--加载数据
Pytorch加载数据pytorch加载数值主要分为两个部分:复写Dataset类建立一个my_dataset类用于将数据集从硬盘中逐条读取利用Dataloader模块读取数据构建Dataset:构建dataset类主要需要几个步骤:1.初始化def init,一般传入数据文件地址和transform2 grtitem方法, 后续被dataloader调用的方法,主要传入index,抽出每一个样本,而且对样本的特征和标签做区分。同时还会处理传入的数据。3 __len__用于return数原创 2020-05-17 11:03:04 · 291 阅读 · 0 评论