RS学习
一看就会,上手就废
这个作者很懒,什么都没留下…
展开
-
pytorch-SVD第二弹
##利用SGD实现SVD算法误差有点高,感觉像是写错了import pandas as pdimport numpy as npimport torchtorch.cuda.empty_cache()data = pd.read_csv('ratings.csv')data_train = data.pivot(index = 'userId', columns = 'movieId', values = 'rating')matrax = data_train.fillna(0)原创 2020-06-16 18:28:23 · 1047 阅读 · 0 评论 -
Pytorch-SVD分解
利用电影评分数据集import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport torchdata = pd.read_csv('movie/ratings.csv')data_train = data.pivot(index = 'userId', columns = 'movieId', values = 'rating')matrax = data_train.fillna(0)matri原创 2020-06-15 18:50:04 · 4837 阅读 · 1 评论 -
协同过滤-读书笔记(未完成)
推荐系统解决的问题对企业而言是解决‘增长’问题,推荐系统处于‘增长引擎’的位置对用户而言是解决信息过载问题,在’信息过载‘的情况下如何获得感兴趣的信息推荐系统的基础问题就是’人‘和’信息‘的关系。上述的信息是在电商场景是’商品信息‘,新闻场景是’新闻信息‘,视频推荐场景是’视频信息‘,更准确的说这里的信息指’物品信息‘上述中的‘人’,在实际过程中‘人’也是各种数据。和人相关的信息可以被称为用户信息除了用户信息和商品信息,为了使推荐系统具有实时推荐的能力,基于用户所处的时间,地点,状态等一系列环原创 2020-06-07 14:07:49 · 157 阅读 · 0 评论