梯度与梯度上升|下降法

本文详细介绍了导数、偏导数、方向导数、梯度及其应用,特别是梯度下降和梯度上升法,阐述了它们在函数变化率和最优化问题中的作用,旨在帮助读者深入理解这些基本概念。
摘要由CSDN通过智能技术生成

这是一个我一直没有弄透彻的概念,特地整理总结一下,希望在这个过程中思路得以拓展。

在引入梯度的概念之前,先介绍一下以下几个概念:导数,偏导数,方向导数。

1. 导数

导数的定义如下:
f ′ ( x 0 ) = l i m Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'(x_0)=lim_{\Delta x \to 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} f(x0)=limΔx0Δxf(x0+Δx)f(x0)
表示的是函数 f ( x ) f(x) f(x)在某一点 x 0 x_0 x0沿着 x x x轴正方向的变化率/变化趋势。当 f ′ ( x 0 ) f'(x_0) f(x0)>0时,说明 f ( x ) f(x) f(x)的函数值在 x 0 x_0 x0点沿x轴正方向是趋于增加的,反之,则是趋于减少的。

2.偏导数

偏导数与导数类似,是指一个多变量的函数,关于其中一个变量的导数,而其他变量保持不变。

三变量函数 f ( x , y , z ) f(x,y,z) f(x,y,z)的偏导数的定义如下:
∂ f ( x 0 , y 0 , z 0 ) ∂ y = l i m Δ y → 0 f ( x 0 , y 0 + Δ y , z 0 ) − f ( x 0 , y 0 , z 0 ) Δ y \frac{\partial f(x_0,y_0,z_0)}{\partial y}=lim_{\Delta y \to 0}\frac{f(x_0,y_0+\Delta y,z_0)-f(x_0,y_0,z_0)}{\Delta y} yf(x0,y0,z0)=limΔy0Δyf(x0,y0+Δy,z0)f(x0,y0,z0)

表示的是三变量函数 f ( x , y , z ) f(x,y,z)

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值