1、在C:\Users\admin\convert_bert_original_tf_checkpoint_to_pytorch.py里修改Bert模型的各配置文件的地址
2、在命令行输入
python convert_bert_original_tf_checkpoint_to_pytorch.py --tf_checkpoint_path bert_model.ckpt.index --bert_config_file bert_config.json --pytorch_dump_path pytorch_model.bin
或
直接在命令行输入,记得修改该命令中的地址
python convert_bert_original_tf_checkpoint_to_pytorch.py --tf_checkpoint_path="C:\Users\admin\uncased_L-8_H-512_A-8\bert_model.ckpt.data-00000-of-00001" --bert_config_file="C:\Users\admin\uncased_L-8_H-512_A-8\bert_config.json" --pytorch_dump_path="C:\Users\admin\uncased_L-8_H-512_A-8\pytorch_model.bin"
失败告终,总是会有报错,Google一开始这个模型就不是以pytorch形式发布的。。。。。。。
好像有不是真的没有成功,虽然会有提示说缺少了一些参数,但有人说“这不是一个错误。您需要训练模型,因为该模型没有经过训练的输出标头。如果您不想训练它,您可以寻找具有适合您任务的具有预训练头部的 bert 模型。这是应该发生的事情。在训练后加载模型时,您将不会看到此错误消息。”
还有人说“这是个警告信息,不是报错信息。这只说明对应的加载的预训练模型与任务类型不完全对应。如这个模型的架构是BertF

最低0.47元/天 解锁文章
677

被折叠的 条评论
为什么被折叠?



