加载预训练模型的两种方式

本文介绍了如何利用HuggingFace库快速加载预训练的BERT模型,包括从线上获取和本地加载两种方式。在线加载简便但可能速度较慢,而本地加载需要配置config.json、vocab.txt和pytorch_model.bin文件。通过本地化存储,可以提高模型加载效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

通过huggingface快速加载

import transformers
from transformers import BertTokenizer,BertModel

tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') #只需要huggingface上对应的模型名称
model = BertModel.from_pretrained('bert-base-chinese')

优点:无脑操作
缺点:每次都需要在网站下载模型参数,用服务器下载有时会特别慢

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

石头猿rock

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值