算法最优化
文章平均质量分 90
每一次思考都是知识的冒险
北纬40度~
编程是一种思维能力,我们要持续性学习
展开
-
等式约束问题的乘子法—PH算法
乘子法是求解等式约束优化问题的一种方法,而PH算法(Predictor-Hyperplane Algorithm)是其中的一种变体,常用于处理带有等式约束的优化问题。PH算法通过在每次迭代中构造并求解一个超平面来逼近目标函数的等高线,从而找到最优解。原创 2023-12-13 17:49:23 · 1124 阅读 · 0 评论 -
模拟退火、遗传算法、分枝定界
模拟退火算法是一种概率型优化算法,用于在大搜索空间中寻找近似最优解。这个算法受到物理退火过程的启发,物理退火过程中材料被加热后再慢慢冷却,原子在高温下获得移动的自由度,并在冷却过程中逐渐减少,最终形成低能量的有序结构。在这张图中,展示了模拟退火算法的一个迭代步骤。这里是这个过程的解释:- 算法计算新的解xnew的目标函数值fxnew与当前解xcurrent的目标函数值fxcurrent之差,记为δfxnew−fxcurrent。- 如果δ。原创 2023-12-13 17:09:27 · 1014 阅读 · 0 评论 -
详解运筹学单纯形法
Q1:单纯形法算法核心思想是什么?Q2:可以用一个实际的场景去解释单纯形法吗?Q3:单纯形法一定在边界处取得最优解吗?Q4:单纯形法通常用于求解什么类型的问题?单纯形法(Simplex Method)的核心思想是在线性规划问题的可行域的顶点之间进行系统的搜索,以找到使目标函数值最优(最大化或最小化)的解。:线性规划问题的解(如果存在)总是在可行域的顶点上。单纯形法利用这一事实,只在顶点之间移动,从而大大减少了搜索空间。:在搜索过程中,算法始终保持在可行域内,确保每一步的解都满足所有约束条件。原创 2023-12-12 16:18:39 · 1849 阅读 · 0 评论 -
算法最优化 - 最速下降法
这种方法使用函数的梯度(gradient)来指导搜索方向,即在当前点的负梯度方向上进行搜索,因为这个方向是函数值下降最快的方向。在二维空间中,想象一个山谷,最速下降法就像是一个人在山坡上直接朝最陡峭的方向下滑。在某些情况下,尤其是当函数的等高线呈延伸状时,最速下降法可能会遇到“之字形”下降或者缓慢逼近最优解的情况。这些方法通过更复杂的方式更新搜索方向和步长,可以更快地逼近最优解,特别是在非线性优化问题中。然而,在延长或狭窄的等高线上,算法可能会在沟壑中振荡,导致收敛速度变慢。原创 2023-12-12 10:12:00 · 1393 阅读 · 0 评论