爬取豆瓣图书top250

本文详细介绍了如何使用Python爬虫技术抓取豆瓣图书Top250的书籍信息,包括设置请求头,创建CSV文件,通过XPath定位数据,并解析title和href属性,最后将数据写入CSV文件中。
摘要由CSDN通过智能技术生成

爬取豆瓣图书top250


豆瓣网址:https://book.douban.com/top250
豆瓣图书第一页:https://book.douban.com/top250?start=0
豆瓣图书第二页:https://book.douban.com/top250?start=25
豆瓣图书第三页:https://book.douban.com/top250?start=50
豆瓣图书第四页:https://book.douban.com/top250?start=75
……
……

从上面可以看出来,爬取豆瓣的URL,只要把最后的数字换成25的倍数就行了,用format()和range()组合:

urls = ['https://book.douban.com/top250?start={}'.format(str(i*25)) for i in range(0,10)]

请求头:

headers = {
   'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36'}

创建CSV文件,待会存入数据:

import csv
f = open('C:/Users/ASUS/Desktop/doubanBook.csv','w+',newline='',encoding='utf-8')#编码换成utf-8,否则最后会出现编码异常
w = csv.writer(f)
w.writerow(('书名','书本的URL链接','作者','出版社','出版时间','书本价格','评分','评价'))#写入一行数据到CSV文件中

进入豆瓣图书网站,检查各个数据的位置,发现需要爬取的数据都在table标签里,这就是循环点,复制该标签࿰

爬虫(Web Crawler)是一种自动化程序,用于从互联网上收集信息。其主要功能是访问网页、提取数据并存储,以便后续分析或展示。爬虫通常由搜索引擎、数据挖掘工具、监测系统等应用于网络数据抓取的场景。 爬虫的工作流程包括以下几个关键步骤: URL收集: 爬虫从一个或多个初始URL开始,递归或迭代地发现新的URL,构建一个URL队列。这些URL可以通过链接分析、站点地图、搜索引擎等方式获取。 请求网页: 爬虫使用HTTP或其他协议向目标URL发起请求,获取网页的HTML内容。这通常通过HTTP请求库实现,如Python中的Requests库。 解析内容: 爬虫对获取的HTML进行解析,提取有用的信息。常用的解析工具有正则表达式、XPath、Beautiful Soup等。这些工具帮助爬虫定位和提取目标数据,如文本、图片、链接等。 数据存储: 爬虫将提取的数据存储到数据库、文件或其他存储介质中,以备后续分析或展示。常用的存储形式包括关系型数据库、NoSQL数据库、JSON文件等。 遵守规则: 为避免对网站造成过大负担或触发反爬虫机制,爬虫需要遵守网站的robots.txt协议,限制访问频率和深度,并模拟人类访问行为,如设置User-Agent。 反爬虫应对: 由于爬虫的存在,一些网站采取了反爬虫措施,如验证码、IP封锁等。爬虫工程师需要设计相应的策略来应对这些挑战。 爬虫在各个领域都有广泛的应用,包括搜索引擎索引、数据挖掘、价格监测、新闻聚合等。然而,使用爬虫需要遵守法律和伦理规范,尊重网站的使用政策,并确保对被访问网站的服务器负责。
爬取豆瓣读书Top250图书封面通常需要利用网络爬虫技术,结合Python等编程语言以及一些第三方库如requests、BeautifulSoup或Scrapy。以下是一个简化的步骤: 1. **获取网页数据**:首先,你需要访问豆瓣读书Top250的页面(https://book.douban.com/top250/)。使用requests库发送HTTP请求,获取HTML内容。 ```python import requests url = 'https://book.douban.com/top250' response = requests.get(url) html_content = response.text ``` 2. **解析HTML**:然后,使用BeautifulSoup或其他类似库解析HTML,找到包含图片URL的HTML元素,例如`<img>`标签。 ```python from bs4 import BeautifulSoup soup = BeautifulSoup(html_content, 'lxml') cover_elements = soup.find_all('img', class_='cover') # 查找class为"cover"的img标签 ``` 3. **提取封面链接**:从解析的结果中提取出实际的图片链接,通常是相对路径加上前缀(如'https://img3.doubanio.com/')。 ```python covers = [element['src'] for element in cover_elements] ``` 4. **下载图片**:如果有需求,可以使用像`requests`配合`io`模块来下载图片并保存到本地。 ```python import os for i, cover_url in enumerate(covers): img_response = requests.get(cover_url) filename = f'top250_{i}.jpg' # 根据索引命名文件 with open(filename, 'wb') as f: f.write(img_response.content) ``` 注意:在实际操作中,可能会遇到反爬机制、版权等问题,所以请确保你的行为符合网站的robots.txt规则,并尊重版权。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>