在深度学习中,自监督学习和对抗性训练是两种强大的技术。自监督学习通过设计预任务来生成伪标签,减少对标注数据的依赖;对抗性训练通过生成对抗样本,提高模型的鲁棒性。本文将详细讲解如何使用Python实现自监督学习与对抗性训练,包括概念介绍、代码实现和示例应用。
目录
- 自监督学习简介
- 自监督学习实现
- 对抗性训练简介
- 对抗性训练实现
- 示例应用:图像分类
- 总结
1. 自监督学习简介
1.1 自监督学习概念
自监督学习是一种无需人工标注数据的学习方法,通过设计预任务生成伪标签,用于训练模型。常见的预任务包括图像的旋转预测、遮挡恢复、上下文预测等。
1.2 自监督学习的优点
减少对人工标注数据的依赖
能够利用大量未标注的数据
提升模型在下游任务中的表现
2. 自监督学习实现
2.1 导入必要的库
首先,导入必要的Python库。
import ten