题目
给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。
示例
输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4
提示
- 你可以假设 nums 中的所有元素是不重复的。
- n 将在 [1, 10000]之间。
- nums 的每个元素都将在 [-9999, 9999]之间。
思路
首先前提为有序数组,并且还强调了无重复元素(如果有重复元素,那么使用二分查找返回的下标有可能不唯一),遇到这两个条件的查找问题大多应该使用二分查找来解决。
二分查找的逻辑比较简单,下面将简单介绍一下概念和一些不好理解的地方,如果大家对这个很感兴趣,推荐大家阅读一位大佬的博客(【二分查找】详细图解_二分查找法流程图-CSDN博客) 总结的十分全面。
二分查找(Binary Search)算法,也叫折半查找算法。二分查找的思想非常简单,有点类似分治的思想。二分查找针对的是一个有序的数据集合,每次都通过跟区间的中间元素对比,将待查找的区间缩小为之前的一半,直到找到要查找的元素,或者区间被缩小为 0。
为了方便理解,我们以数组1, 2, 4, 5, 6, 7, 9, 12, 15, 19, 23, 26, 29, 34, 39
,在数组中查找26
为例,制作了一张查找过程图,其中low
标示左下标,high
标示右下标,mid
标示中间值下标
二分查找的过程就像上图一样,如果中间值大于查找值,则往数组的左边继续查找,如果小于查找值这往右边继续查找。
注意点
二分查找逻辑虽然简单,但是最需要注意的是它的边界条件,例如到底是 while(left < right)
还是 while(left <= right)
,到底是right = middle
呢,还是要right = middle - 1
呢?
写二分法经常写乱,主要是因为对区间的定义没有想清楚,区间的定义就是不变量。要在二分查找的过程中,保持不变量,就是在while寻找中每一次边界的处理都要坚持根据区间的定义来操作,这就是循环不变量规则。
写二分法,区间的定义一般为两种,左闭右闭即[left, right],或者左闭右开即[left, right)。
下面将引用随想录中对这两种区间的定义分别讲解两种不同的二分写法。
一、左闭右闭
我们定义 target 是在一个在左闭右闭的区间里,也就是[left, right] 。
区间的定义这就决定了二分法的代码应该如何写,因为定义target在[left, right]区间,所以有如下两点:
- while (left <= right) 要使用 <= ,因为left == right是有意义的,所以使用 <=
- if (nums[middle] > target) right 要赋值为 middle - 1,因为当前这个nums[middle]一定不是target,那么接下来要查找的左区间结束下标位置就是 middle - 1
(大家可以去原文或者上面提到的博客链接中查看相关图片描述,这里就不再介绍)
c++代码如下:
class Solution {
public:
int search(vector<int>& nums, int target) {
int left = 0;
int right = nums.size() - 1; // 定义target在左闭右闭的区间里,[left, right]
while (left <= right) { // 当left==right,区间[left, right]依然有效,所以用 <=
int middle = left + ((right - left) / 2);// 防止溢出 等同于(left + right)/2
if (nums[middle] > target) {
right = middle - 1; // target 在左区间,所以[left, middle - 1]
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,所以[middle + 1, right]
} else { // nums[middle] == target
return middle; // 数组中找到目标值,直接返回下标
}
}
// 未找到目标值
return -1;
}
};
代码中有一个需要注意的细节是每次循环中的middle的定义,二分查找时,求取中间值的操作步骤,写法mid = (left + right) / 2,这种写法存在问题。原因:left可能不断增大,如果到极限状态,也就是left达到了right-1的地步的时候刚好数组的长度又很大,那么就可能导致left + right的溢出出现负数;改进写法:mid=left+(right-left)/2或mid=left+((right-left)>>2)
(right+left)相加的结果可能会导致整型溢出的情况,(right-left)使用减法不会超出最大的整型范畴;>>是右移运算符,右移一位相当于除2,右移n位相当于除以2的n次方;mid=(left+right)>>1等价于mid=(left+right)/2;left+(right-left)/2通分可知是等同于 (left + right) / 2;
- 时间复杂度:O(log n)
- 空间复杂度:O(1)
二、左闭右开
如果说定义 target 是在一个在左闭右开的区间里,也就是[left, right) ,那么二分法的边界处理方式则截然不同。
有如下两点:
- while (left < right),这里使用 < ,因为left == right在区间[left, right)是没有意义的
- if (nums[middle] > target) right 更新为 middle,因为当前nums[middle]不等于target,去左区间继续寻找,而寻找区间是左闭右开区间,所以right更新为middle,即:下一个查询区间不会去比较nums[middle]
c++代码:
class Solution {
public:
int search(vector<int>& nums, int target) {
int left = 0;
int right = nums.size(); // 定义target在左闭右开的区间里,即:[left, right)
while (left < right) { // 因为left == right的时候,在[left, right)是无效的空间,所以使用 <
int middle = left + ((right - left) >> 1);
if (nums[middle] > target) {
right = middle; // target 在左区间,在[left, middle)中
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,在[middle + 1, right)中
} else { // nums[middle] == target
return middle; // 数组中找到目标值,直接返回下标
}
}
// 未找到目标值
return -1;
}
};
- 时间复杂度:O(log n)
- 空间复杂度:O(1)
个人感悟
可以说是对本科阶段所学的二分查找法进行了一次很好的查漏补缺和归纳总结, 以前确实没有考虑到区间的边界处理方面,导致在进行编码的时候思路比较乱,脑子里觉得逻辑很简单,但是写出来之后小问题不断,通过重新阅读学习,我认识到在循环中应该始终坚持根据查找区间的定义来做边界处理。区间的定义就是不变量,那么在循环中坚持根据查找区间的定义来做边界处理,就是循环不变量规则。
相关题目推荐
其他语言版本
可以关注一下Java版本中的一些细节, 代码如下
class Solution {
public int search(int[] nums, int target) {
// 避免当 target 小于nums[0] nums[nums.length - 1]时多次循环运算
if (target < nums[0] || target > nums[nums.length - 1]) {
return -1;
}
int left = 0, right = nums.length - 1;
while (left <= right) {
int mid = left + ((right - left) >> 1);
if (nums[mid] == target)
return mid;
else if (nums[mid] < target)
left = mid + 1;
else if (nums[mid] > target)
right = mid - 1;
}
return -1;
}
}
与c++不同的是这里开始就对target做了超区间处理,防止多次循环运算。