代码随想录阅读笔记-贪心算法【跳跃游戏】

文章讲述了如何使用贪心算法解决跳跃问题,关注于计算最大跳跃步数的覆盖范围,以确定是否能从数组的第一个位置到达最后一个位置。通过比较当前位置和已到达的最大覆盖范围,判断是否能到达终点,时间复杂度为O(n),空间复杂度为O(1)。
摘要由CSDN通过智能技术生成

题目

给定一个非负整数数组,你最初位于数组的第一个位置。

数组中的每个元素代表你在该位置可以跳跃的最大长度。

判断你是否能够到达最后一个位置。

示例  1:

  • 输入: [2,3,1,1,4]
  • 输出: true
  • 解释: 我们可以先跳 1 步,从位置 0 到达 位置 1, 然后再从位置 1 跳 3 步到达最后一个位置。

示例  2:

  • 输入: [3,2,1,0,4]
  • 输出: false
  • 解释: 无论怎样,你总会到达索引为 3 的位置。但该位置的最大跳跃长度是 0 , 所以你永远不可能到达最后一个位置。

思路 

刚看到本题一开始可能想:当前位置元素如果是 3,我究竟是跳一步呢,还是两步呢,还是三步呢,究竟跳几步才是最优呢?

其实跳几步无所谓,关键在于可跳的覆盖范围!

不一定非要明确一次究竟跳几步,每次取最大的跳跃步数,这个就是可以跳跃的覆盖范围。

这个范围内,别管是怎么跳的,反正一定可以跳过来。

那么这个问题就转化为跳跃覆盖范围究竟可不可以覆盖到终点!

每次移动取最大跳跃步数(得到最大的覆盖范围),每移动一个单位,就更新最大覆盖范围。

贪心算法局部最优解:每次取最大跳跃步数(取最大覆盖范围),整体最优解:最后得到整体最大覆盖范围,看是否能到终点

局部最优推出全局最优,找不出反例,试试贪心!

如图:

i 每次移动只能在 cover 的范围内移动,每移动一个元素,cover 得到该元素数值(新的覆盖范围)的补充,让 i 继续移动下去。

而 cover 每次只取 max(该元素数值补充后的范围, cover 本身范围)。

如果 cover 大于等于了终点下标,直接 return true 就可以了。

C++代码如下:

class Solution {
public:
    bool canJump(vector<int>& nums) {
        int cover = 0;
        if (nums.size() == 1) return true; // 只有一个元素,就是能达到
        for (int i = 0; i <= cover; i++) { // 注意这里是小于等于cover
            cover = max(i + nums[i], cover);
            if (cover >= nums.size() - 1) return true; // 说明可以覆盖到终点了
        }
        return false;
    }
};
  • 时间复杂度: O(n)
  • 空间复杂度: O(1)

这里同样和大家分享一下笔者遇到的错误,先附上代码如下

class Solution {
public:
    bool canJump(vector<int>& nums) {
        unordered_set<int> reach;
        for(int i = 0 ; i < nums.size()-1 ; i++)
        {
            for(int j = 1; j < nums[i]+1 ; j++)
            {
                reach.insert(i+j);
            }
        }
        reach.insert(nums.size());
        for(int i = 1 ; i < nums.size() ; i++)
        {
            if(reach.find(i) == reach.end()) return false;
        }
        return true;
    }
};

 思路也很简单,也是覆盖域的思想,我的做法是把每个位置能达到的位置索引放到一个集合中,遍历完除最后一个元素外数组中所有元素后形成一个到达集合,即这个数组所有能到达的索引集,接着判断能否到达最后一个位置的条件为集合中存在从1到最后一个位置的索引n之间的所有位置,故再使用一次遍历即可达到目标,但是我这样的做法在leetcode上无法通过,会存在一些测例会超时,其实原因也很简单,我这个方法需要遍历两遍数组,并且在构建到达索引集合时还嵌套循环了,时间复杂度为n平方级别,所以很容易便超时了。

这里给大家举我这个例子是想和上面的做法有一个对比,下次大家遇到相同的情景时,可以优先考虑去维护一个实现简单的元素来代表这个覆盖域,以本题为例则是用int类型的cover代表覆盖域边界而不是用我上面提到的可达索引集(代价太高)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值