题目
给定一个非负整数数组,你最初位于数组的第一个位置。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个位置。
示例 1:
- 输入: [2,3,1,1,4]
- 输出: true
- 解释: 我们可以先跳 1 步,从位置 0 到达 位置 1, 然后再从位置 1 跳 3 步到达最后一个位置。
示例 2:
- 输入: [3,2,1,0,4]
- 输出: false
- 解释: 无论怎样,你总会到达索引为 3 的位置。但该位置的最大跳跃长度是 0 , 所以你永远不可能到达最后一个位置。
思路
刚看到本题一开始可能想:当前位置元素如果是 3,我究竟是跳一步呢,还是两步呢,还是三步呢,究竟跳几步才是最优呢?
其实跳几步无所谓,关键在于可跳的覆盖范围!
不一定非要明确一次究竟跳几步,每次取最大的跳跃步数,这个就是可以跳跃的覆盖范围。
这个范围内,别管是怎么跳的,反正一定可以跳过来。
那么这个问题就转化为跳跃覆盖范围究竟可不可以覆盖到终点!
每次移动取最大跳跃步数(得到最大的覆盖范围),每移动一个单位,就更新最大覆盖范围。
贪心算法局部最优解:每次取最大跳跃步数(取最大覆盖范围),整体最优解:最后得到整体最大覆盖范围,看是否能到终点。
局部最优推出全局最优,找不出反例,试试贪心!
如图:
i 每次移动只能在 cover 的范围内移动,每移动一个元素,cover 得到该元素数值(新的覆盖范围)的补充,让 i 继续移动下去。
而 cover 每次只取 max(该元素数值补充后的范围, cover 本身范围)。
如果 cover 大于等于了终点下标,直接 return true 就可以了。
C++代码如下:
class Solution {
public:
bool canJump(vector<int>& nums) {
int cover = 0;
if (nums.size() == 1) return true; // 只有一个元素,就是能达到
for (int i = 0; i <= cover; i++) { // 注意这里是小于等于cover
cover = max(i + nums[i], cover);
if (cover >= nums.size() - 1) return true; // 说明可以覆盖到终点了
}
return false;
}
};
- 时间复杂度: O(n)
- 空间复杂度: O(1)
这里同样和大家分享一下笔者遇到的错误,先附上代码如下
class Solution {
public:
bool canJump(vector<int>& nums) {
unordered_set<int> reach;
for(int i = 0 ; i < nums.size()-1 ; i++)
{
for(int j = 1; j < nums[i]+1 ; j++)
{
reach.insert(i+j);
}
}
reach.insert(nums.size());
for(int i = 1 ; i < nums.size() ; i++)
{
if(reach.find(i) == reach.end()) return false;
}
return true;
}
};
思路也很简单,也是覆盖域的思想,我的做法是把每个位置能达到的位置索引放到一个集合中,遍历完除最后一个元素外数组中所有元素后形成一个到达集合,即这个数组所有能到达的索引集,接着判断能否到达最后一个位置的条件为集合中存在从1到最后一个位置的索引n之间的所有位置,故再使用一次遍历即可达到目标,但是我这样的做法在leetcode上无法通过,会存在一些测例会超时,其实原因也很简单,我这个方法需要遍历两遍数组,并且在构建到达索引集合时还嵌套循环了,时间复杂度为n平方级别,所以很容易便超时了。
这里给大家举我这个例子是想和上面的做法有一个对比,下次大家遇到相同的情景时,可以优先考虑去维护一个实现简单的元素来代表这个覆盖域,以本题为例则是用int类型的cover代表覆盖域边界而不是用我上面提到的可达索引集(代价太高)。