《代码随想录》
代码规范
命名
-
小驼峰、大驼峰命名法
-
下划线命名法
-
匈牙利命名法
水平留白(代码空格)
操作符左右一定有空格
隔符(,
和;
)前一位没有空格,后一位保持空格
大括号和函数保持同一行,并有一个空格
控制语句(while,if,for)后都有一个空格
时间复杂度是一个函数,定性描述该算法的运行时间
O用来表示上界的 快速排序是O(nlogn)的时间复杂度
O(1)常数阶 < O( log n)对数阶 < O(n)线性阶 < O(n log n)线性对数阶 < O(n^2)平方阶 < O(n^3)立方阶 < O(2^n)指数阶
数组
数组理论基础
存放在连续内存空间上的相同类型数据的集合
下标都是从0开始的。数组内存空间的地址是连续的。
数组的元素是不能删的,只能覆盖。(C++)
Java是没有指针的,同时也不对程序员暴露其元素的地址,寻址操作完全交给虚拟机。
二分查找
循环不变量原则
前提:有序数组,无重复元素
1.左闭右闭即[left, right]
-
while (left <= right) 要使用 <=
-
if (nums[middle] > target) right 要赋值为 middle - 1
2.左闭右开即[left, right)
-
while (left < right),这里使用 <
-
if (nums[middle] > target) right 更新为 middle
移除元素
暴力解法O(n^2)
两层for循环,一个for循环遍历数组元素 ,第二个for循环更新数组
for (int i = 0; i < size; i++) { if (nums[i] == val) { // 发现需要移除的元素,就将数组集体向前移动一位 for (int j = i + 1; j < size; j++) { nums[j - 1] = nums[j]; } i--; // 因为下标i以后的数值都向前移动了一位,所以i也向前移动一位 size--; // 此时数组的大小-1 } }
双指针法O(n)
通过一个快指针和慢指针在一个for循环下完成两个for循环的工作。
定义快慢指针
-
快指针:寻找新数组的元素 ,新数组就是不含有目标元素的数组
-
慢指针:指向更新 新数组下标的位置
int slowIndex = 0; for (int fastIndex = 0; fastIndex < nums.size(); fastIndex++) { if (val != nums[fastIndex]) { nums[slowIndex++] = nums[fastIndex]; } }
有序数组的平方
暴力排序 O(n + nlogn)
每个数平方之后,排个序
双指针法O(n)
最大值就在数组的两端,不是最左边就是最右边
i指向起始位置,j指向终止位置
新数组result,和A一样大,让k指向新数组终止位置
int k = A.size() - 1; vector<int> result(A.size(), 0); for (int i = 0, j = A.size() - 1; i <= j;) { // 注意这里要i <= j,因为最后要处理两个元素 if (A[i] * A[i] < A[j] * A[j]) { result[k--] = A[j] * A[j]; j--; } else { result[k--] = A[i] * A[i]; i++; } }
长度最小的子数组
给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的 连续 子数组,并返回其长度。如果不存在符合条件的子数组,返回 0。
暴力解法O(n^2)
两个for循环,然后不断的寻找符合条件的子序列
一个for循环滑动窗口的起始位置,一个for循环为滑动窗口的终止位置
滑动窗口O(n)
不断的调节子序列的起始位置和终止位置,从而得出我们要想的结果
int result = INT32_MAX; int sum = 0; // 滑动窗口数值之和 int i = 0; // 滑动窗口起始位置 int subLength = 0; // 滑动窗口的长度 for (int j = 0; j < nums.size(); j++) { sum += nums[j]; // 注意这里使用while,每次更新 i(起始位置),并不断比较子序列是否符合条件 while (sum >= s) { subLength = (j - i + 1); // 取子序列的长度 result = result < subLength ? result : subLength; sum -= nums[i++]; // 这里体现出滑动窗口的精髓之处,不断变更i(子序列的起始位置) } }
螺旋矩阵II
给定一个正整数 n,生成一个包含 1 到 n^2 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵。
模拟顺时针画矩阵的过程:
-
填充上行从左到右
-
填充右列从上到下
-
填充下行从右到左
-
填充左列从下到上
vector<vector<int>> res(n, vector<int>(n, 0)); // 使用vector定义一个二维数组 int startx = 0, starty = 0; // 定义每循环一个圈的起始位置 int loop = n / 2; // 每个圈循环几次,例如n为奇数3,那么loop = 1 只是循环一圈,矩阵中间的值需要单独处理 int mid = n / 2; // 矩阵中间的位置,例如:n为3, 中间的位置就是(1,1),n为5,中间位置为(2, 2) int count = 1; // 用来给矩阵中每一个空格赋值 int offset = 1; // 需要控制每一条边遍历的长度,每次循环右边界收缩一位 int i,j; while (loop --) { i = startx; j = starty; // 下面开始的四个for就是模拟转了一圈 // 模拟填充上行从左到右(左闭右开) for (j = starty; j < n - offset; j++) { res[startx][j] = count++; } // 模拟填充右列从上到下(左闭右开) for (i = startx; i < n - offset; i++) { res[i][j] = count++; } // 模拟填充下行从右到左(左闭右开) for (; j > starty; j--) { res[i][j] = count++; } // 模拟填充左列从下到上(左闭右开) for (; i > startx; i--) { res[i][j] = count++; } // 第二圈开始的时候,起始位置要各自加1, 例如:第一圈起始位置是(0, 0),第二圈起始位置是(1, 1) startx++; starty++; // offset 控制每一圈里每一条边遍历的长度 offset += 1; } // 如果n为奇数的话,需要单独给矩阵最中间的位置赋值 if (n % 2) { res[mid][mid] = count; } return res; }
链表
理论基础链表
单链表
通过指针串联在一起的线性结构,每一个节点由两部分组成,一个是数据域一个是指针域,最后一个节点的指针域指向null(空指针的意思)。单链表中的指针域只能指向节点的下一个节点
双链表
每一个节点有两个指针域,一个指向下一个节点,一个指向上一个节点。
双链表 既可以向前查询也可以向后查询。
循环链表
循环链表,顾名思义,就是链表首尾相连。
链表的定义
// 单链表 struct ListNode { int val; // 节点上存储的元素 ListNode *next; // 指向下一个节点的指针 ListNode(int x) : val(x), next(NULL) {} // 节点的构造函数 };
移除链表元素(虚拟头结点)
删除链表中等于给定值 val 的所有节点。
-
直接使用原来的链表来进行删除操作。(单独写一段逻辑来处理移除头结点的情况)
-
设置一个虚拟头结点在进行删除操作。
ListNode* removeElements(ListNode* head, int val) { // 删除头结点 while (head != NULL && head->val == val) { // 注意这里不是if ListNode* tmp = head; head = head->next; delete tmp; } // 删除非头结点 ListNode* cur = head; while (cur != NULL && cur->next!= NULL) { if (cur->next->val == val) { ListNode* tmp = cur->next; cur->next = cur->next->next; delete tmp; } else { cur = cur->next; } } return head; }
ListNode* removeElements(ListNode* head, int val) { ListNode* dummyHead = new ListNode(0); // 设置一个虚拟头结点 dummyHead->next = head; // 将虚拟头结点指向head,这样方面后面做删除操作 ListNode* cur = dummyHead; while (cur->next != NULL) { if(cur->next->val == val) { ListNode* tmp = cur->next; cur->next = cur->next->next; delete tmp; } else { cur = cur->next; } } head = dummyHead->next; delete dummyHead; return head; }
设计链表(虚拟头结点)
// 定义链表节点结构体 struct LinkedNode { int val; LinkedNode* next; LinkedNode(int val):val(val), next(nullptr){} }; // 初始化链表 MyLinkedList() { _dummyHead = new LinkedNode(0); // 这里定义的头结点 是一个虚拟头结点,而不是真正的链表头结点 _size = 0; } // 获取到第index个节点数值,如果index是非法数值直接返回-1, 注意index是从0开始的,第0个节点就是头结点 int get(int index) { if (index > (_size - 1) || index < 0) { return -1; } LinkedNode* cur = _dummyHead->next; while(index--){ // 如果--index 就会陷入死循环 cur = cur->next; } return cur->val; } // 在链表最前面插入一个节点,插入完成后,新插入的节点为链表的新的头结点 void addAtHead(int val) { LinkedNode* newNode = new LinkedNode(val); newNode->next = _dummyHead->next; _dummyHead->next = newNode; _size++; } // 在链表最后面添加一个节点 void addAtTail(int val) { LinkedNode* newNode = new LinkedNode(val); LinkedNode* cur = _dummyHead; while(cur->next != nullptr){ cur = cur->next; } cur->next = newNode; _size++; } // 在第index个节点之前插入一个新节点,例如index为0,那么新插入的节点为链表的新头节点。 // 如果index 等于链表的长度,则说明是新插入的节点为链表的尾结点 // 如果index大于链表的长度,则返回空 // 如果index小于0,则在头部插入节点 void addAtIndex(int index, int val) { if(index > _size) return; if(index < 0) index = 0; LinkedNode* newNode = new LinkedNode(val); LinkedNode* cur = _dummyHead; while(index--) { cur = cur->next; } newNode->next = cur->next; cur->next = newNode; _size++; } // 删除第index个节点,如果index 大于等于链表的长度,直接return,注意index是从0开始的 void deleteAtIndex(int index) { if (index >= _size || index < 0) { return; } LinkedNode* cur = _dummyHead; while(index--) { cur = cur ->next; } LinkedNode* tmp = cur->next; cur->next = cur->next->next; delete tmp; //delete命令指示释放了tmp指针原本所指的那部