线性最小方差估计理论推导

线性最小方差估计理论推导

  • 定义
    也叫线性最小均方误差估计,顾名思义,就是使估计误差的平方和的均值达到最小。

  • 理论推导
    假设系统 z = H x + ϵ z=Hx+\epsilon z=Hx+ϵ已知, x x x为真实值, z z z为观测到的数据,我们需要利用观测到的数据去估计真值,故被估量为 x x x,假设 E ( x ) = x ˉ , E(x)=\bar{x}, E(x)=xˉ V a r ( x ) = Q x Var(x)=Q_x Var(x)=Qx x x x ϵ \epsilon ϵ不相关(有 E ( x ϵ ) = 0 E(x\epsilon)=0 E(xϵ)=0),且噪声 ϵ \epsilon ϵ满足 E ( ϵ ) = 0 E(\epsilon)=0 E(ϵ)=0 V a r ( ϵ ) = R Var(\epsilon)=R Var(ϵ)=R,则有 E ( z ) = H x ˉ , V a r ( z ) = H Q x H T + R , C o v ( x , z ) = Q x H T E(z)=H\bar{x},Var(z)=HQ_xH^T+R,Cov(x,z)=Q_xH^T E(z)=HxˉVar(z)=HQxHT+RCov(x,z)=QxHT我们需要用一个 z z z的一个线性函数 x ^ = A z + B \hat{x}=Az+B x^=Az+B去估计 x x x(因为 z z z才是我们能得到的值),利用均方误差最小的准则,计算其均方误差为
    I = E [ ( x ^ − x ) T ( x ^ − x ) ] = E [ ( A z + B − x ) T ( A z + B − x ) ] = E [ t r ( ( A z + B − x ) ( A z + B − x ) T ) ] = t r E [ ( ( A z + B − x ) ( A z + B − x ) T ) ] I=E[(\hat{x}-x)^T(\hat{x}-x)]=E[(Az+B-x)^T(Az+B-x)]=E[tr((Az+B-x)(Az+B-x)^T)]=trE[((Az+B-x)(Az+B-x)^T)] I=E[(x^x)T(x^x)]=E[(Az+Bx)T(Az+Bx)]=E[tr((Az+Bx)(Az+Bx)T)]=trE[((Az+Bx)(Az+Bx)T)]
    既然是求最小值,肯定需要求偏导数呀, A , B A,B A,B是待定的矩阵,就对 A , B A,B A,B求偏导:
    ∂ I ∂ A = 2 E [ ( A z + B − x ) z T ] = 0 \frac{\partial I}{\partial A}=2E[(Az+B-x)z^T]=0 AI=2E[(Az+Bx)zT]=0
    ∂ I ∂ B = 2 E ( A z + B − x ) = 0 \frac{\partial I}{\partial B}=2E(Az+B-x)=0 BI=2E(Az+Bx)=0
    第二个式子得 B = E x − A E z = x ˉ − A H x ˉ B=Ex-AEz=\bar{x}-AH\bar{x} B=ExAEz=xˉAHxˉ带入第一个式子得
    A = C o v ( x , z ) ( V a r ( z ) ) − 1 = Q x H T ( H Q x H T + R ) − 1 A=Cov(x,z)(Var(z))^{-1}=Q_xH^T(HQ_xH^T+R)^{-1} A=Cov(x,z)(Var(z))1=QxHT(HQxHT+R)1,将 A A A B B B带入 x ^ = A z + B \hat{x}=Az+B x^=Az+B得到 x x x的线性最小方差估计为:
    x ^ = Q x H T ( H Q x H T + R ) − 1 ( z − H x ˉ ) + x ˉ \hat{x}=Q_xH^T(HQ_xH^T+R)^{-1}(z-H\bar{x})+\bar{x} x^=QxHT(HQxHT+R)1(zHxˉ)+xˉ
    估计误差:
    w = x − x ^ = ( x − x ˉ ) − Q x H T ( H Q x H T + R ) − 1 ( z − H x ˉ ) w=x-\hat{x}=(x-\bar{x})-Q_xH^T(HQ_xH^T+R)^{-1}(z-H\bar{x}) w=xx^=(xxˉ)QxHT(HQxHT+R)1(zHxˉ)
    估计误差的方差阵为:
    P = E ( w w T ) = V a r ( x ) − Q x H T ( H Q x H T + R ) − 1 C o v ( z , x ) P=E(ww^T)=Var(x)-Q_xH^T(HQ_xH^T+R)^{-1}Cov(z,x) P=E(wwT)=Var(x)QxHT(HQxHT+R)1Cov(z,x)
    P = E ( w w T ) = Q x − Q x H T ( H Q x H T + R ) − 1 H Q x P=E(ww^T)=Q_x-Q_xH^T(HQ_xH^T+R)^{-1}HQ_x P=E(wwT)=QxQxHT(HQxHT+R)1HQx
    至此推导完成,若 Q x Q_x Qx非奇异,则可利用下述公式简化误差的方差阵:

  • Sherman–Morrison–Woodbury 公式
    设矩阵 A ∈ R m × m A∈R^{m×m} ARm×m D ∈ R n × n D∈R^{n×n} DRn×n非奇异, 且 B ∈ R m × n B∈R^{m×n} BRm×n, C ∈ R n × m C∈R^{n×m} CRn×m. 若 C A − 1 B + D − 1 CA^{−1}B+D^{−1} CA1B+D1 非奇异, 则矩阵 A + B D C A + BDC A+BDC 非奇异, 且
    ( A + B D C ) − 1 = A − 1 − A − 1 B ( D − 1 + C A − 1 B ) − 1 C A − 1 (A + BDC)^{−1}= A^{−1} − A^{−1}B(D^{−1}+ CA^{−1}B)^{−1}CA^{−1} (A+BDC)1=A1A1B(D1+CA1B)1CA1利用上述公式得估计误差的方差阵:
    P = ( Q x − 1 + H T R − 1 H ) − 1 P=(Q_x^{-1}+H^{T}R^{-1}H)^{-1} P=(Qx1+HTR1H)1
    博客处女作,能力和经验有限,有错误的地方请大家指正,感谢!

  • 20
    点赞
  • 43
    收藏
    觉得还不错? 一键收藏
  • 11
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值