机器学习算法
文章平均质量分 73
学习笔记
第五本日记
这个作者很懒,什么都没留下…
展开
-
机器学习3--逻辑回归
一、概述逻辑回归分析是对定性变量的回归分析,机对变量进行分类预测,如预测是否为垃圾邮件,某人的信用是否为良好等。二、算法推导对于线性回归模型,有如下表达方式:而对于线性回归预测模型,其取值是连续的,不能够满足作为分类值的需求,如需将预测值全部归并到0和1范围内,需要进行如下逻辑变换,即:将函数进行归并化简得到如下:在进行分类时:假设Y是0-1型变量,其损失函数为,可通过似然函数求对数得到:化简可以得到:对损失函数进行梯度下降三、算法Python实现python算法原创 2021-05-29 22:32:37 · 147 阅读 · 0 评论 -
机器学习2-线性回归
一、矩阵求导公式1、总体情况2.分子布局(Numerator layout)和分母布局(Denominator layout)首先我们常说 y 对 x 求导,这里的 y 和 x 均默认为列向量,y为(mx1), x为(nx1)(1)分子布局——较为常用y 对 xT 求导,即对行向量求导。得到mxn的矩阵。比如雅可比矩阵,就是典型的分子布局。雅可比矩阵形式如下:可见y依然是竖向变化的,而横向是对不同的x求导,也就是说x是横向的。所以是y对 xT 求导。(2)分母布局——较为常用yT 对 x原创 2021-05-27 22:21:55 · 962 阅读 · 0 评论