在学习两类曲线积分的时候,书上眼花缭乱的公式变来变去的极限,实在是让人脑壳痛。
为了 探索科学的秘密 (期末考试)我顶着头皮发麻的感觉看完了整个过程,由此写下此文。
我们知道他们最后的联系体现在一个公式上,
这个公式告诉我们,第二类曲线积分(等号左边)可以用 第一类曲线积分(等号右边)表示,那这是怎么一肥四呢。
等号左边
我们先来看看等号左边,回顾一下第二类曲线积分这个表达式咋来的。(具体的代数证明在书上有,这里不引用啦。)
第二类曲线积分实际上就是求一个向量和曲线上 各个小段弧 的内积之和,只不过这个弧非常非常非常短,这个非常非常非常就是取极限的过程。
一开始我们引入了求功的具体实例来讨论向量积分,求功就是求两个向量的内积,不过这两个向量比较好动变来变去的。
所以他就可以体现到上面那个公式上了。
我们上面上面那个公式里的是 dx,dy,为什么这里是 △x,△y呢,因为让这个 M1M2 趋近无穷小(也就是取极限)就是dx,dy了。
这是一个比较粗糙的过程但大概就是这样的。
等号右边
我们要知道等号右边首先要知道等号右边那个