两类曲线积分的联系较深层解读

在学习两类曲线积分的时候,书上眼花缭乱的公式变来变去的极限,实在是让人脑壳痛。
为了 探索科学的秘密 (期末考试)我顶着头皮发麻的感觉看完了整个过程,由此写下此文。

我们知道他们最后的联系体现在一个公式上,
在这里插入图片描述

这个公式告诉我们,第二类曲线积分(等号左边)可以用 第一类曲线积分(等号右边)表示,那这是怎么一肥四呢。

等号左边

我们先来看看等号左边,回顾一下第二类曲线积分这个表达式咋来的。(具体的代数证明在书上有,这里不引用啦。)
第二类曲线积分实际上就是求一个向量和曲线上 各个小段弧 的内积之和,只不过这个弧非常非常非常短,这个非常非常非常就是取极限的过程。
一开始我们引入了求功的具体实例来讨论向量积分,求功就是求两个向量的内积,不过这两个向量比较好动变来变去的。
在这里插入图片描述
所以他就可以体现到上面那个公式上了。

我们上面上面那个公式里的是 dx,dy,为什么这里是 △x,△y呢,因为让这个 M1M2 趋近无穷小(也就是取极限)就是dx,dy了。
这是一个比较粗糙的过程但大概就是这样的。

等号右边

我们要知道等号右边首先要知道等号右边那个

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值