数学建模学习(73):用Python敏感性分析,如此轻松简单

本文介绍了敏感性分析的概念及其在数学建模中的应用,特别是通过Python进行线性规划建模。内容涵盖何时进行敏感性分析、影子价格和松弛变量的含义,以及如何使用Python的pulp库解决实际问题,通过实例展示了约束条件变化对目标函数的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在当今世界,仅创建模型是不够的,我们还需要从不同方面对模型进行解释。
敏感性分析是一种探索特征变化对LP模型影响的方法。在这种方法中,我们将改变一个特征并保持其他特征不变,并检查对模型输出的影响。敏感性分析的主要目的是观察特征变化对 LP 模型最优解的影响。

我们通过以下 3 种方式进行敏感性分析,具体内容请参考目录内容:

  • 目标函数系数值的变化
  • 常数右侧值的变化。
  • 常数系数的变化。

一、什么是敏感性分析?

这里我们引用维基百科的描述如下:

敏感度分析(Sensitivity analysis,也称敏感性分析)是研究数学模型或系统(数值或其他)输出中的不确定性如何在其输入中被分配到不同的不确定性来源。

### Python中实现线性规划的敏感度分析 对于Python中的线性规划敏感度分析,主要依赖于优化求解器以及辅助工具来完成。通常情况下,`PuLP` 是一个广泛使用的用于定义和解决线性编程问题的库[^1]。然而,在执行敏感度分析方面,专门设计用来评估参数变化影响的方法较少见。 为了进行更深入的敏感度研究,可以考虑结合 `Pyomo` 或者 `SciPy.optimize.linprog` 来构建模型并获取最优解之后再手动调整输入变量观察其对结果的影响。但是这些方法并不像 SALib 对其他类型的模拟那样提供内置的支持函数来进行自动化处理。 当涉及到具体应用时,比如想要了解某个特定系数的变化如何改变最终决策,则可能需要编写额外代码片段去迭代不同场景下的解决方案,并记录下每次运行后的差异情况作为敏感度报告的一部分。 ```python from pulp import LpMaximize, LpProblem, LpStatus, lpSum, LpVariable # 创建一个问题实例 model = LpProblem(name="small-problem", sense=LpMaximize) # 定义决策变量 x = LpVariable(name="x", lowBound=0) y = LpVariable(name="y", lowBound=0) # 添加约束条件 model += (2 * x + y <= 20, "red_constraint") model += (4 * x - 5 * y >= -10, "blue_constraint") model += (-x + 2 * y >= -2, "yellow_constraint") # 设置目标函数 objective_function = x + 2 * y model += objective_function status = model.solve() print(f"状态: {LpStatus[status]}") for var in model.variables(): print(f"{var.name}: {var.value()}") print(f"最优点的目标值 = {model.objective.value()}") ``` 此段代码展示了如何利用 PuLP 库建立简单的最大化问题及其解答过程。要对其做进一步的敏感度探讨就需要在此基础上增加循环结构或其他机制来自动生成多种可能性供比较之用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

川川菜鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值