机器学习-NLP(二):LSTM假新闻检测

本文介绍了使用LSTM模型进行假新闻检测的步骤,包括数据读取、清洗、编码、模型创建和训练。通过实例展示了如何将文本转换为数字数据,使用 Embedding 和 LSTM 层构建模型,并评估模型的预测精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文案例为假新闻检测,主要使用模型为LSTM。通过案例的过程,来轻松的入门实践文本分类。

导入相关库

import re
import nltk
import numpy as np
import pandas as pd
import tensorflow as tf
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
from tensorflow.keras.models import Sequential
from sklearn.model_selection import train_test_split
from tensorflow.keras.preprocessing
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

川川菜鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值