数学建模学习(124):使用Python实现模糊ARAS方法从原理到实战

1. 引言

在复杂的决策场景中,决策者往往面对的不仅仅是多个选择(备选方案),还必须考虑多个评价标准(准则)。更为复杂的是,许多准则可能并不是简单的确定值,而是具有模糊性或不确定性。这种情况下,模糊多准则决策分析(Fuzzy MCDA)方法能够为决策者提供有效的支持。

模糊ARAS方法是经典ARAS方法的扩展,结合了模糊逻辑,允许权重和准则值为模糊数,帮助决策者在不确定和模糊的数据下进行多准则决策。本文将以一个设备采购的实际案例为例,详细介绍如何利用Python中的pyDecision库实现模糊ARAS方法,并说明各部分数据的来源及其具体含义。

2. 模糊ARAS方法原理

ARAS方法的基本思想是通过对各个备选方案进行标准化、加权和计算效用值来排序并选择最优方案。模糊ARAS方法的特别之处在于,它使用了模糊数来表示评价值和权重,能够更好地处理不确定性和模糊性。

2.1 模糊数的表示

在模糊ARAS方法中,权重和准则值使用模糊数表示,通常以三元组 (a, b, c) 的形式出现:

  • a&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

川川菜鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值