给定一个完全由小写英文字母组成的字符串等差递增序列,该序列中的每个字符串的长度固定为 L,从 L 个 a 开始,以 1 为步长递增。例如当 L 为 3 时,序列为 { aaa, aab, aac, ..., aaz, aba, abb, ..., abz, ..., zzz }。这个序列的倒数第27个字符串就是 zyz。对于任意给定的 L,本题要求你给出对应序列倒数第 N 个字符串。
输入格式:
输入在一行中给出两个正整数 L(2 ≤ L ≤ 6)和 N(≤10^5)。
输出格式:
在一行中输出对应序列倒数第 N 个字符串。题目保证这个字符串是存在的。
输入样例:
3 7417
输出样例:
pat
正如题意可知,长为L的串是从全a开始,至全z结束。不难发现,其实从尾部开始向前查找,与从头部开始向后查找,本质上是没有区别的。
为了便于理解,讨论从头部开始向后查找的情形。
由于没有限制各个字符的出现次数,因而可以简单地按计数原理处理。
假设只有10种不同的字符,而非26种,那么第i个字符串,其实就是枚举这个数字i的每一位,转换为相应的字符。相当于十进制。
26种字符,等价于26进制计数,因而仅需简单地循环对26取余,转化为对应的字母即可。由于题目中N实际上是很小的(26^6=308915776),因而某些情况下存在字符串长度不够的情况,不能遗漏。
既然顺序会做,反序也就不在话下了。
#include <bits/stdc++.h>
using namespace std;
int main(void){
int l,n;
cin>>l>>n;n--;
stack<int> p;
while(n){
p.push(25-n%26);
n/=26;
}
for(int i=0;i<l-p.size();i++)cout<<'z';
while(!(p.empty())){
printf("%c",'a'+p.top());
p.pop();
}
return 0;
}