自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 【python记录】④ 常用库——numpy

其中数组元素为随机值,因为它们未初始化。⑩ np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None):用于创建一个一维数组,数组是一个等差数列构成的,endpoint值为 true 时,数列中包含stop值,反之不包含,默认是True。(2)numpy.amax(a, axis=None, out=None, keepdims=, initial=, where=) :计算数组中的元素沿指定轴的最大值。

2024-07-28 11:45:43 902

原创 【python记录】③ 基础语法——标准库概述以及常用函数解读

① os 模块:os 模块提供了许多与操作系统交互的函数,例如创建、移动和删除文件和目录,以及访问环境变量等。② sys 模块:sys 模块提供了与 Python 解释器和系统相关的功能,例如解释器的版本和路径,以及与 stdin、stdout 和 stderr 相关的信息。③ time 模块:time 模块提供了处理时间的函数,例如获取当前时间、格式化日期和时间、计时等。④ datetime 模块:datetime 模块提供了更高级的日期和时间处理函数,例如处理时区、计算时间差、计算日期差等。

2024-07-16 23:21:18 915

原创 【python记录】② 基础语法——输入输出、数据结构详解、函数、类、异常概述

④ 列表推导:squares = list(map(lambda x: x**2, range(10)))等价于squares = [x**2 for x in range(10)]③不定长参数:**name 形式时,接收一个字典, *name 形参接收一个 元组,*name 必须在 **name 前面,单独出现星号 *,则星号 * 后的参数必须用关键字传入。要从队列提取一个条目,使用 popleft()② 类的实例化 x = MyClass(),实例化操作 (“调用”类对象) 会创建一个空对象。

2024-07-15 19:14:27 583

原创 【python记录】① 基础语法——预备知识、数据类型、运算类型、条件语句、循环语句、迭代器和生成器概述

圆括号的表达式>切片>await x>乘方>正,负,按位非 NOT>乘,矩阵乘,除,整除,取余>加和减>移位>按位与>按位异或>按位或>比较运算>逻辑非>逻辑与>逻辑或>条件表达式(if else)>lambda 表达式>赋值表达式。④ 可以进行运算:a - b(a 和 b 的差集)、a | b(a 和 b 的并集)、a & b(a 和 b 的交集)、a ^ b(a 和 b 中不同时存在的元素)例:tuple = ( ‘abcd’, 786 , 2.23, ‘runoob’, 70.2 )

2024-07-12 22:38:34 764

原创 让样本不一样重要-A Dual Weighting Label Assignment Scheme for Object Detection

CVPR 2022论文链接:https://arxiv.org/abs/2203.09730个人理解:作者发现样本的重要性是不一致的,正负样本所占权重不一致,基于此提出了多重加权(pos和neg)。一个样本的pos权重由其分类和定位分数之间的一致性程度决定,而neg权重被分解为两个项:它是一个否定样本的概率和它作为一个否定样本的重要性。论文思路:静态和动态匹配策略都忽略了样本不同样重要这一事实,最优预测不仅应该具有较高的分类分数,还应该具有准确的定位,这意味着在训练中,分类头和回归头之间具有较高一致性

2022-04-15 20:41:57 7339 4

原创 让边界信息更清晰-Instance Localization for Self-supervised Detection Pretraining

CVPR 2021论文链接:https://arxiv.org/abs/2102.08318个人理解论文思路:提出问题:方法:实验:结果:文章目录简介一、pandas是什么?二、使用步骤1.引入库2.读入数据总结简介一、pandas是什么?示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。二、使用步骤1.引入库代码如下(示例):import numpy as npimport pandas as pdimport matplotlib

2022-04-01 00:08:25 4234

原创 让特征更可辨识-FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding

CVPR 2021论文链接:https://arxiv.org/abs/2103.05950个人理解论文思路:作者认为,低AP源于混淆分类带来的误分类,可以通过输入图像与支持样例的特征进行对比的方法,来提高类紧凑和类间差。提出问题:少样本下的误分类问题方法:实验:结果:详细叙述简介相关方法方法1.引入库2.读入数据实验总结简介深度学习需要大量的标记数据,而现实生活中存在很多少样本的情况。在少样本训练中,存在误分类的问题。在深层网络中,少样本会有严重的过采样问题。在以往的方法中,元

2022-03-23 15:06:27 4453

原创 让检测变简单-End-to-End Object Detection with Fully Convolutional Network

CVPR 2021论文链接:https://arxiv.org/abs/2012.03544个人理解论文思路:针对NMS,分析能否去掉NMS,提出 POTO 用于动态分配前景样本和 3DMF 提高卷积的可判别性提出问题:NMS is not necessary and could a fully convolutional network achieve competitive end-to-end object detection方法:实验:结论:详细叙述简介相关方法方法1.分析 l

2022-03-05 00:04:32 3250

原创 screen常用命令

前言linux下screen相关命令常用:一、screen介绍当数据量较大,运行时间较长时,直接跑命令,窗口或许异常终止,不得不重新跑,这个时候可以使用screen命令,即使网络连接中断,用户也不会失去对已经打开的命令行会话的控制。二、screen使用1.screen下载yum install -y screen2.screen创建1)输入名字创建screen -S screen_name2)不输入name创建screen3.screen退出exit提示:[screen i

2021-03-18 16:27:20 900

原创 YOLOv4系列backbone-CSPNet: A new backbone that can enhance learning capability of cnn.

文章目录前言发表源代码论文动机论文贡献与成果模型方法说明1.DenseNet与CSPNet模型2.DenseNet与CSPNet的前馈传递与权重更新3.CSPNet各个阶段的目的4.EFM机制5.CSPNet的变体实验总结前言YOLOv4中所采用的的backbone发表CVPR2020源代码https://github.com/WongKinYiu/CrossStagePartialNetworks论文动机作者认为推理计算过高的问题是由于网络优化中的梯度信息重复导致的。CSPNet通过将

2021-03-12 17:16:58 540

原创 网络程序设计复习

万维网的工作过程(1)确定网页文件URL(统一资源定位器),如为http://www.edu.cn/app/exam.html。(2)浏览器向DNS(域名服务器)发出请求,要求把域名www.edu.cn转化为IP地址。(3)DNS进行查询后,向浏览器发出应答IP地址。(4)HTTP协议工作阶段:浏览器向相应IP地址的80端口建立一条TCP连接的请求。(5)连接建立成功后,浏览器发出一条请求传输网页的HTTP命令。(6)服务器收到请求后,向浏览器发送相应网页文件。(7)文件发送完成后,服务器主动

2020-11-12 13:07:13 1850 9

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除