本文仅记录kmp算法代码过程。
KMP算法特点
指针不回溯,算法时间复杂度在 O(n*m)但实际运行复杂度接近O(n+m),因此相比于简单模式匹配,这是一种十分高效的算法。
核心代码——求next数组
void GetNext(const char T[], int next[]) {
next[1] = 0;
int i = 1, j = 0; // i是当前主串正在匹配的字符位置,也是next的索引。
while (i <= T[0]) {
if (j == 0 || T[i] == T[j]) next[++i] = ++j;
else j = next[j];
}
}
核心代码2——KMP函数
// S为文本串,T为模式串。
int KMP(const char S[], const char T[]) {
int i = 1, j = 1;
while (i <= S[0] && j <= T[0]) {
if (j == 0 || S[i] == T[j]) {
++i;
++j;
} else j = next_val[j];
}
if (j > T[0]) return i - T[0];
return 0;
}
补充——求next_val函数(next修正值)
void get_next_val(const char ch[]) {
int i = 1, j = 0;
next_val[1] = 0;
while (i <= ch[0]) {
if (j == 0 || ch[i] == ch[j]) {
if (ch[++i] != ch[++j]) next_val[i] = j;
else next_val[i] = next_val[j];
} else j = next_val[j];
}
}
实际运行的时候,先用申请全局变量next或next_val数组,再进行数组的数值的求取,最后使用kmp算法进行模式匹配即可。