KMP算法学习

本文仅记录kmp算法代码过程。

KMP算法特点

指针不回溯,算法时间复杂度在 O(n*m)但实际运行复杂度接近O(n+m),因此相比于简单模式匹配,这是一种十分高效的算法。

核心代码——求next数组

void GetNext(const char T[], int next[]) {
    next[1] = 0;
    int i = 1, j = 0; // i是当前主串正在匹配的字符位置,也是next的索引。
    while (i <= T[0]) {
        if (j == 0 || T[i] == T[j]) next[++i] = ++j;
        else j = next[j];
    }
}

核心代码2——KMP函数

// S为文本串,T为模式串。
int KMP(const char S[], const char T[]) {
    int i = 1, j = 1;
    while (i <= S[0] && j <= T[0]) {
        if (j == 0 || S[i] == T[j]) {
            ++i;
            ++j;
        } else j = next_val[j];
    }
    if (j > T[0]) return i - T[0];
    return 0;
}

补充——求next_val函数(next修正值)

void get_next_val(const char ch[]) {
    int i = 1, j = 0;
    next_val[1] = 0;
    while (i <= ch[0]) {
        if (j == 0 || ch[i] == ch[j]) {
            if (ch[++i] != ch[++j]) next_val[i] = j;
            else next_val[i] = next_val[j];
        } else j = next_val[j];
    }
}

实际运行的时候,先用申请全局变量next或next_val数组,再进行数组的数值的求取,最后使用kmp算法进行模式匹配即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值