题目
现在小学的数学题目也不是那么好玩的。
看看这个寒假作业:
□ + □ = □
□ - □ = □
□ × □ = □
□ ÷ □ = □
每个方块代表1~13中的某一个数字,但不能重复。
比如:
6 + 7 = 13
9 - 8 = 1
3 * 4 = 12
10 / 2 = 5
以及:
7 + 6 = 13
9 - 8 = 1
3 * 4 = 12
10 / 2 = 5
就算两种解法。(加法,乘法交换律后算不同的方案)
你一共找到了多少种方案?
请填写表示方案数目的整数。
注意:你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。
题解
暴力全排列 或 dfs。
全排列使用next_permutation。
用时比较长,多等会就可以,这种方法比较稳。
dfs参数为深度,每个深度对应一个算式,每个算式中都枚举第一个操作数和第二个操作数,第三个操作数由二者计算得到,判断三个数是否被用过或者是否合法。
答案是64
代码
DFS
#include<bits/stdc++.h>
using namespace std;
int ans, vis[20];
void dfs (int d) { // d表示第d个算式(0~3)
if (d == 4) {
ans ++;
return ;
}
for (int i = 1;i <= 13;i ++)
for (int j = 1;j <= 13;j ++) {
if (i == j || vis[i] || vis[j]) continue; // 两操作数相同或者存在一个操作数用过
int k; // 记录结果
if (d == 0) k = i+j;
else if (d == 1) k = i-j;
else if (d == 2) k = i*j;
else {
if (i % j) continue; // 不能整除
k = i/j;
}
if (k > 13 || k < 1) continue; // 结果超出1~13的范围
if (k == i || k == j || vis[k]) continue; // 结果等于两个操作数或者结果用过了
// 合法
vis[i] = vis[j] = vis[k] = 1;
dfs (d + 1);
vis[i] = vis[j] = vis[k] = 0;
}
}
int main()
{
dfs (0);
cout << ans << endl;
return 0;
}
全排列
#include<bits/stdc++.h>
using namespace std;
int a[13] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13};
int ans = 0;
int main()
{
do {
if (a[0] + a[1] == a[2] &&
a[3] - a[4] == a[5] &&
a[6] * a[7] == a[8] &&
a[9] % a[10] == 0 &&
a[9] / a[10] == a[11])
ans ++;
} while (next_permutation(a, a + 13));
cout << ans << endl;
return 0;
}