【计算机视觉】MoCo v3 讲解

本文详细探讨了MoCo v3,一种用于训练自监督视觉Transformer的框架。文章揭示了在对比学习中使用Transformer时的训练不稳定性问题,并提供了关于学习率、batchsize和模型结构对稳定性影响的实证研究。作者通过实验展示了固定patch映射层可以提高训练稳定性并提升模型性能。此外,MoCo v3在ViT-B/16上的实验结果显示,其在多个对比学习方法中表现出色,尤其是在大规模模型中。文章还讨论了位置嵌入、CLS token、BN操作和预测层在模型中的作用,以及动量编码器的动量系数对性能的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MoCo v3

论文信息

标题:An Empirical Study of Training Self-Supervised Vision Transformers

作者:Xinlei Chen, Saining Xie, Kaiming He

期刊:ICCV 2021

发布时间与更新时间:2021.04.05 2021.04.08 2021.05.05 2021.08.16

主题:计算机视觉、对比学习、MoCo

arXiv:[2104.02057] An Empirical Study of Training Self-Supervised Vision Transformers (arxiv.org)

代码:GitHub - facebookresearch/moco-v3: PyTorch implementation of MoCo v3 https//arxiv.org/abs/2104.02057

模型

作者谦虚地指出 MoCo v3 这篇论文没

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不牌不改

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值