自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 资源 (1)
  • 收藏
  • 关注

原创 C++常用函数sort的使用

当然可以,这就需要sort()的第三个参数comp,其类型是Compare类,C++内置的类。在用C++刷题的时候,会经常使用map数据结构,他默认是对key排序的,那能不能将其改为按照value排序呢,最简单当然可以新建一个map,将原来的kay,value,倒换顺序插入,但我们也可以利用sort函数进行排序。本菜狗也不太清楚里面具体是怎么实现的,但是comp只需要是一个bool类型的返回值的函数即可,其传入的参数是vector中元素的类型,例如,如果是简单的vector,那么该comp函数可以写成。

2024-09-22 20:18:21 1298

原创 Leetcode 笔记

本题是动态规划的一道经典题目,只要能正确分析出他的状态转移方程,就很简单。假设该数组为a,假设其值为[-6, 1, 9, -5, -22 …]首先设置状态方程,f(i)为第前i个数字的最大子数组和,那么毫无疑问f(0)=a[0]。f(i+1)如何确定呢?应该是由f(i)和a[i+1]的状态决定的。f(i+1)的取值有两种情况,一是(a[i+1] >= f(i)+a[i+1]),那么f(i+1) = a[i+1]二是(a[i+1] < f(i)+a[i+1]),那么f(i+1) = f(i) +

2022-06-07 20:11:35 266

原创 Linux shell命令注意事项

如很简单,但是注意=两侧不要放空格。在写条件判断相关语句,例如while注意[和$iter之间一定要有空格,后面的-le,]也是如此shell命令的编译比较严格,要十分注意空格的使用,尤其是在变量与运算符之间。...

2022-06-06 17:09:37 169

原创 目标检测中常见的指标——MAP

计算MAP之前要先了解一下的指标:图中红色检测框与绿色GT框之间的IOU为0.85,认为是TP。IOU为0.3的检测框为FP,即把不是猫的物体错误检测为猫没有检测框检测到目标,认为是漏检,为FN如图所示,为了得到PR曲线,我们需要计算不同RANK-K下的P、R值,然后求其面积,因为是求面积,所以对同一个Recall值,我们选取其对应最大的Precision值计算所有类别的AP,然后求其均值,即可得到MAP。分享COCO数据集下的一些计算指标

2022-06-01 16:40:02 675

原创 R-CNN 理论笔记

Selective Search算法得到一系列矩形框,假设有2K个将2K个候选区域缩放到227227,接着输入到AlexNet CNN,得到2K$$4096的特征矩阵。假设有20个类,那么得到的2000*4096的特征与4096*20的SVM权值矩阵相乘,得到2000*20的概率矩阵。2000代表2000个候选框,每个候选框有20个概率值,代表该候选框属于该类的概率此处还需对2000*20的每一列进行非极大值抑制剔除重复建议框。将建议框与GT目标框坐标对建议框进行微调。

2022-06-01 16:36:59 124

原创 Fast R-CNN 理论笔记

使用VGG16网络作为backbone,Fast R-CNN训练速度快9倍,测试速度快213倍,且准确率提高。Fast R-CNN网络结构图需要注意的是生成的2K个候选特征图并不是全部送入网络,而是选取64个样本,其中含正样本与负样本(根据IOU判断),使得样本分布均衡这样将每个图像分成7*7部分,生成7*7的特征图,这样就不必限制图像尺寸。7*7的特征图输入到两个FC的全连接层中得到ROI feature vector,然后将其并行送入预测模块与回归模块。预测模块FC+softmax,输出N+1个类

2022-06-01 16:34:09 104

原创 Faster R-CNN 理论笔记

Faster R-CNN理论笔记

2022-06-01 16:25:30 129

转载 对RANSAC算法的理解

文章目录RANSAC简单理解RANSAC详细理解RANSAC简单理解RANSAC是“RANdom SAmple Consensus(随机抽样一致)”的缩写。见名知义,就是在全部的抽样点中随机选取一些点,这些点的拟合模型是一致的。RANSAC详细理解首先我们理解几个概念:局内点,局外点、噪声。参照下图:在这张图中,蓝色的点就是相对于直线(蓝色)模型的局内点,红色的点就是局外点。(噪声点是除局外点和局内点的点,例如蓝色点中距离直线最远的点,你可以说他是局内点,但由于对直线的拟合程度不是特别好,也可

2021-07-12 15:09:01 220

原创 数据库安全性

数据库原理复习4数据库安全性数据库安全性控制常用方法:用户标识和鉴定存取控制:常用的存取控制方法:自主存取控制(DAC)C2级,灵活强制存取控制(MAC)B1级,严格授权 :grant <权限>[,权限]…[on<对象类型><对象名>]to <用户>[,用户]…[with grant option]with grant option:决定是否具有传播权限的权力例:把查询student表和course表的全部权限授予给用户U2和U

2020-12-04 17:48:27 299

原创 数据库原理复习3

数据库原理复习3关系数据库标准语言SQL学生-课程数据库:S表:snosnamessexsdepsage801张三女0119C表:cnocnamecreditcpnoC1数据库3.5C2SC表:snocnograde801C492数据的定义数据库的定义:CREATE DATEBASE <数据库名>数据库的删除:DROP DATABAS

2020-12-04 11:29:37 2032

原创 数据库原理复习笔记2

数据库原理复习笔记关系数据库1、关系数据库的结构及形式化定义概念:域——值-》整数——1笛卡尔积:例 A={a,b},B={1,2,3}AB= {(a,1)(a,2)(a,3)(b,1)(b,2)(b,3)}BA= {(1,a)(1,b)(2,a)(2,b)(3,a)(3,b)}关系:D1*…*Dn 的子集为D1,…,Dn上的关系R(D1…Dn)超码:任意一个候选码的超集候选码:能唯一标识元组的属性(组)(可能是多个属性组成一个候选码)主码:多个候选码中选取一个作为主码主属性:候选码

2020-12-02 19:55:03 134

原创 数据库原理复习笔记1

数据库原理复习笔记1.绪论数据库系统概述1.基本概念:数据、数据库、数据库管理系统(DBMS)、数据库系统(DBS)数据库管理系统是一个软件、主要功能有:·数据定义功能·数据操纵功能·数据库的运行管理·数据库的建立和维护数据库系统简称数据库:包含数据库(存放数据)、DBMS、应用系统、数据库管理员、用户数据库管理技术的发展阶段人工管理阶段-》文件系统阶段-〉数据库系统阶段2、数据模型:(数据结构+数据操作+数据的约束条件)两部抽象:现实世界客观对象抽象为概念模型(ER图)逻辑模

2020-12-01 19:47:50 280

原创 素数判断 isPrime

判断一个数是否是素数,常用的办法就是循环判断int i=2;while((n%i!=0)&&i<n)i++;这种方法运算次数较多,可以将i<n替换为i<Math.sqrt(n)因为我们要找的是n的因数,所以没必要循环到n。如果假设N不是质数,有个因数大于根号N(不是N本身)则N必定有一个与之对应的小于根号N的因数也就是说,如果2到根号N都没有N的...

2020-03-14 17:27:51 1994

课堂练习-二叉树的建立.cpp

数据结构二叉树的建立,使用递归实现,“#”代表空树,先序输出,#include<iostream> using namespace std; typedef char Elemtype; typedef struct Node { Elemtype data; struct Node *LChild; struct Node *RChild; } BiNode,*BiTree;

2020-05-10

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除