R-CNN 理论笔记

这篇博客深入探讨了R-CNN(Region-based Convolutional Neural Network)算法的工作原理,包括使用SelectiveSearch生成候选区域,通过AlexNet提取特征,利用SVM进行分类以及回归器微调框位置。尽管R-CNN在目标检测上取得进展,但其测试和训练速度慢、空间需求大的问题也十分明显。
摘要由CSDN通过智能技术生成

R-CNN 理论笔记

算法流程

  • 将一张图像生成1K~2K个候选区域(使用Selective Search方法)
  • 对每个候选区,使用深度网络提取特征
  • 特征送入每一类的SVM分类器,判断是否属于该类
  • 使用回归器精细修正候选框位置。

1.

Selective Search算法得到一系列矩形框,假设有2K个

2.

将2K个候选区域缩放到227227,接着输入到AlexNet CNN,得到2K$$4096的特征矩阵。

3.

假设有20个类,那么得到的2000*4096的特征与4096*20的SVM权值矩阵相乘,得到2000*20的概率矩阵。

在这里插入图片描述

2000代表2000个候选框,每个候选框有20个概率值,代表该候选框属于该类的概率
此处还需对2000*20的每一列进行非极大值抑制剔除重复建议框。

4.

将建议框与GT目标框坐标对建议框进行微调。

在这里插入图片描述

R-CNN存在的问题

  • 测试速度慢
  • 训练速度慢
  • 训练所需空间大
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
R-CNN(Region-based Convolutional Neural Networks)是一种目标检测算法,它通过两个阶段来检测图像中的目标物体。首先,R-CNN使用选择性搜索(Selective Search)算法生成一系列候选区域,然后对每个候选区域进行卷积神经网络(CNN)特征提取和分类。R-CNN的主要缺点是速度较慢,因为每个候选区域都需要独立地进行CNN特征提取和分类。 Fast R-CNN是对R-CNN的改进,它通过引入RoI池化层(Region of Interest pooling)来解决R-CNN中重复计算的问题。RoI池化层可以将不同大小的候选区域映射为固定大小的特征图,从而使得所有候选区域可以共享相同的特征提取过程。这样一来,Fast R-CNN相比于R-CNN具有更快的速度。 Faster R-CNN是对Fast R-CNN的进一步改进,它引入了一个称为Region Proposal Network(RPN)的子网络来生成候选区域。RPN通过滑动窗口在特征图上提取候选区域,并为每个候选区域分配一个得分,然后根据得分进行筛选和排序。这种端到端的训练方式使得Faster R-CNN在目标检测任务上具有更高的准确性和更快的速度。 Mask R-CNN是在Faster R-CNN的基础上进一步发展的,它不仅可以进行目标检测,还可以进行实例分割。Mask R-CNN在Faster R-CNN的基础上增加了一个分支网络,用于预测每个候选区域中目标物体的像素级掩码。这使得Mask R-CNN能够同时获得目标的位置信息和像素级别的语义信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值