问题描述
上小学的时候,小明经常自己发明新算法。
一次,老师出的题目是: 1/4 乘以 8/5
小明居然把分子拼接在一起,分母拼接在一起,答案是:18/45
老师刚想批评他,转念一想,这个答案凑巧也对啊,真是见鬼!
对于分子、分母都是 1~9 中的一位数的情况,还有哪些算式可以这样计算呢?
请写出所有不同算式的个数(包括题中举例的)。
注意
显然,交换分子分母后,例如:4/1 乘以 5/8 是满足要求的,这算做不同的算式。
但对于分子分母相同的情况,2/2 乘以 3/3 这样的类型太多了,不在计数之列!
答案提交
注意:答案是个整数(考虑对称性,肯定是偶数)。请通过浏览器提交。
不要书写多余的内容。
答案:14
解题思路:
刚开始我得出的答案是 13,为什么会这样呢,因为第二个条件我写的是 (double) a/b * c/d == (double) (a * 10 + c) / (b * 10 + d)
我本来以为转换成浮点型就万事大吉了,没想到在这道题目出错了,之前的题目都可以的 o(╥﹏╥)o
所以遇到除法的时候,还是转换成乘法比较保险。
题解:
#include <iostream>
using namespace std;
int main()
{
int ans = 0;
for(int a = 1; a <= 9; a ++)
for(int b = 1; b <= 9; b ++)
for(int c = 1; c <= 9; c ++)
for(int d = 1; d <= 9; d ++)
{
if(a == b || c == d) continue;
if(a * c * (b * 10 + d) == b * d * (a * 10 + c)) ans ++;
}
cout << ans << endl;
return 0;
}