第十一届蓝桥杯 ——子串分值

题目描述
对于一个字符串 S S S,我们定义 S S S 的分值 f ( S ) f(S) f(S) S S S 中恰好出现一次的字符个数。

例如 f ( “ a b a ” ) = 1 f(“aba”)=1 f(aba)=1 f ( “ a b c ” ) = 3 f(“abc”)=3 f(abc)=3 f ( “ a a a ” ) = 0 f(“aaa”)=0 f(aaa)=0

现在给定一个字符串 S [ 0.. n − 1 ] S[0..n−1] S[0..n1],请你计算对于所有 S S S 的非空子串 S [ i . . j ] S[i..j] S[i..j] f ( S [ i . . j ] ) f(S[i..j]) f(S[i..j]) 的和是多少。

输入格式
输入一行包含一个由小写字母组成的字符串 S。

输出格式
输出一个整数表示答案。

输入样例
ababc

输出样例
21

样例解释

子串 f值
a     1
ab    2
aba   1
abab  0
ababc 1
 b    1
 ba   2
 bab  1
 babc 2
  a   1
  ab  2
  abc 3
   b  1
   bc 2
    c 1

数据范围
对于 20% 的评测用例, 1 ≤ n ≤ 10 1 ≤ n ≤ 10 1n10
对于 40% 的评测用例, 1 ≤ n ≤ 100 1 ≤ n ≤ 100 1n100
对于 50% 的评测用例, 1 ≤ n ≤ 1000 1 ≤ n ≤ 1000 1n1000
对于 60% 的评测用例, 1 ≤ n ≤ 10000 1 ≤ n ≤ 10000 1n10000
对于所有评测用例, 1 ≤ n ≤ 100000 1 ≤ n ≤ 100000 1n100000


题解一(超时)
暴力枚举 O ( N 3 ) O(N^3) O(N3):可得 40% 的分数

解题思路

  1. 枚举区间左端点;
  2. 枚举区间右端点;
  3. 遍历当前所枚举的区间,累加仅出现一次的字母个数;

unordered_set:自动删去重复元素,使得集合内的元素各不相同;

  1. size:返回集合内的元素数量;
  2. count:判断某个元素是否在集合中;
  3. erase:删去集合中的某个元素;
  4. insert:向集合中插入某个元素;
#include <iostream>
#include <unordered_set>
using namespace std;

int main()
{
    string s;
    cin >> s;
    
    int ans = 0;
    for (int l = 0; l < s.size(); l ++)
        for (int r = l; r < s.size(); r ++)
        {
            unordered_set<char> S, T;
            for (int k = l; k <= r; k ++)
                if(S.count(s[k]))
                {
                    S.erase(s[k]);
                    T.insert(s[k]);
                }
                else if(!S.count(s[k]) && !T.count(s[k]))
                {
                    S.insert(s[k]);
                }
            ans += S.size();    
        }
        
    cout << ans << endl;
    return 0;
}

题解二(超时)
稍加优化 O ( N 2 ) O(N^2) O(N2):可得 50% ~ 60% 的分数

#include <iostream>
#include <unordered_set>
using namespace std;

int main()
{
    string s;
    cin >> s;
    
    int ans = 0;
    for (int l = 0; l < s.size(); l ++)
    {
        unordered_set<char> S, T;
        for (int r = l; r < s.size(); r ++)
        {
            if(S.count(s[r]))
            {
                S.erase(s[r]);
                T.insert(s[r]);
            }
            else if(!S.count(s[r]) && !T.count(s[r]))
            {
                S.insert(s[r]);
            }
            ans += S.size();
        }
    }
        
    cout << ans << endl;
    return 0;
}

题解三
乘法原理 O ( N ) O(N) O(N)

解题思路

  1. 统计每个字母在仅出现一次的情况下,能被多少子串所包含;
  2. pre[i] 记录第 i 个字母上一次出现的位置,用 next[i] 记录第 i 个字母下一次出现的位置;
  3. 那么往左最多能延伸到 pre[i] + 1,其到第 i 个字母一共有 i - pre[i] 个字母;
  4. 同理往右最多能延伸到 next[i] - 1,其到第 i 个字母一共有 next[i] - i 个字母;
  5. 二者相乘,就是该字母被不同子串所包含的总次数;
#include <iostream>
using namespace std;

typedef long long LL;

const int N = 100010, M = 150;

string s;
int Pre[N], Next[N], Idx[M];

int main()
{
    cin >> s;
    
    int n = s.size();
    s = ' ' + s;
    
    for (int i = 1; i <= n; i ++)
    {
        Pre[i] = Idx[s[i]];
        Idx[s[i]] = i;
    }
    
    for (int i = 97; i <= 122; i ++) Idx[i] = n + 1;		// 右边界初始化
    
    for (int i = n; i >= 1; i --)
    {
        Next[i] = Idx[s[i]];
        Idx[s[i]] = i;
    }
    
    LL ans = 0;
    for (int i = 1; i <= n; i ++)
        ans += (LL) (i - Pre[i]) * (Next[i] - i);

    cout << ans << endl;
    return 0;
}

蓝桥杯C/C++组省赛历年题

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值