题目描述
对于一个字符串
S
S
S,我们定义
S
S
S 的分值
f
(
S
)
f(S)
f(S) 为
S
S
S 中恰好出现一次的字符个数。
例如 f ( “ a b a ” ) = 1 f(“aba”)=1 f(“aba”)=1, f ( “ a b c ” ) = 3 f(“abc”)=3 f(“abc”)=3, f ( “ a a a ” ) = 0 f(“aaa”)=0 f(“aaa”)=0。
现在给定一个字符串 S [ 0.. n − 1 ] S[0..n−1] S[0..n−1],请你计算对于所有 S S S 的非空子串 S [ i . . j ] S[i..j] S[i..j] , f ( S [ i . . j ] ) f(S[i..j]) f(S[i..j]) 的和是多少。
输入格式
输入一行包含一个由小写字母组成的字符串 S。
输出格式
输出一个整数表示答案。
输入样例
ababc
输出样例
21
样例解释
子串 f值
a 1
ab 2
aba 1
abab 0
ababc 1
b 1
ba 2
bab 1
babc 2
a 1
ab 2
abc 3
b 1
bc 2
c 1
数据范围
对于 20% 的评测用例,
1
≤
n
≤
10
1 ≤ n ≤ 10
1≤n≤10;
对于 40% 的评测用例,
1
≤
n
≤
100
1 ≤ n ≤ 100
1≤n≤100;
对于 50% 的评测用例,
1
≤
n
≤
1000
1 ≤ n ≤ 1000
1≤n≤1000;
对于 60% 的评测用例,
1
≤
n
≤
10000
1 ≤ n ≤ 10000
1≤n≤10000;
对于所有评测用例,
1
≤
n
≤
100000
1 ≤ n ≤ 100000
1≤n≤100000。
题解一(超时)
暴力枚举
O
(
N
3
)
O(N^3)
O(N3):可得 40% 的分数
解题思路
:
- 枚举区间左端点;
- 枚举区间右端点;
- 遍历当前所枚举的区间,累加仅出现一次的字母个数;
unordered_set
:自动删去重复元素,使得集合内的元素各不相同;
size
:返回集合内的元素数量;count
:判断某个元素是否在集合中;erase
:删去集合中的某个元素;insert
:向集合中插入某个元素;
#include <iostream>
#include <unordered_set>
using namespace std;
int main()
{
string s;
cin >> s;
int ans = 0;
for (int l = 0; l < s.size(); l ++)
for (int r = l; r < s.size(); r ++)
{
unordered_set<char> S, T;
for (int k = l; k <= r; k ++)
if(S.count(s[k]))
{
S.erase(s[k]);
T.insert(s[k]);
}
else if(!S.count(s[k]) && !T.count(s[k]))
{
S.insert(s[k]);
}
ans += S.size();
}
cout << ans << endl;
return 0;
}
题解二(超时)
稍加优化
O
(
N
2
)
O(N^2)
O(N2):可得 50% ~ 60% 的分数
#include <iostream>
#include <unordered_set>
using namespace std;
int main()
{
string s;
cin >> s;
int ans = 0;
for (int l = 0; l < s.size(); l ++)
{
unordered_set<char> S, T;
for (int r = l; r < s.size(); r ++)
{
if(S.count(s[r]))
{
S.erase(s[r]);
T.insert(s[r]);
}
else if(!S.count(s[r]) && !T.count(s[r]))
{
S.insert(s[r]);
}
ans += S.size();
}
}
cout << ans << endl;
return 0;
}
题解三
乘法原理
O
(
N
)
O(N)
O(N):
解题思路
:
- 统计每个字母在仅出现一次的情况下,能被多少子串所包含;
- 用
pre[i]
记录第i
个字母上一次出现的位置,用next[i]
记录第i
个字母下一次出现的位置; - 那么往左最多能延伸到
pre[i] + 1
,其到第i
个字母一共有i - pre[i]
个字母; - 同理往右最多能延伸到
next[i] - 1
,其到第i
个字母一共有next[i] - i
个字母; - 二者相乘,就是该字母被不同子串所包含的总次数;
#include <iostream>
using namespace std;
typedef long long LL;
const int N = 100010, M = 150;
string s;
int Pre[N], Next[N], Idx[M];
int main()
{
cin >> s;
int n = s.size();
s = ' ' + s;
for (int i = 1; i <= n; i ++)
{
Pre[i] = Idx[s[i]];
Idx[s[i]] = i;
}
for (int i = 97; i <= 122; i ++) Idx[i] = n + 1; // 右边界初始化
for (int i = n; i >= 1; i --)
{
Next[i] = Idx[s[i]];
Idx[s[i]] = i;
}
LL ans = 0;
for (int i = 1; i <= n; i ++)
ans += (LL) (i - Pre[i]) * (Next[i] - i);
cout << ans << endl;
return 0;
}