C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
Input
第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
Output
对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
Sample Input
1
10
1 2 3 4 5 6 7 8 9 10
Query 1 3
Add 3 6
Query 2 7
Sub 10 2
Add 6 3
Query 3 10
End
Sample Output
Case 1:
6
33
59
模板题 边看别人代码边敲出来的其实不算自己写的,自己弄懂一个题比划水10道题都有用·
树状数组还没弄清,点这里
暴力ac
在这里插入代码片#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
using namespace std;
int sum[50010];
int main()
{
int t,k=1;
scanf("%d",&t);
while(t--)
{
int n,a;
scanf("%d",&n);
for(int i=1; i<=n; i++)
{
scanf("%d",&a);
sum[i]=sum[i-1]+a; //计算前i项和
}
char b[10];
int x,y;
printf("Case %d:\n",k++);
while(~scanf("%s",b))
{
if(b[0]=='E')
break;
if(b[0]=='Q')
{
scanf("%d %d",&x,&y);
printf("%d\n",sum[y]-sum[x-1]);
}
if(b[0]=='A')
{
scanf("%d %d",&x,&y);
for(int i=x;i<=n;i++)
sum[i]+=y; //因为x变了,所以前x项和到前n项和都要变
}
if(b[0]=='S')
{
scanf("%d %d",&x,&y);
for( int i=x;i<=n;i++)
sum[i]-=y;
}
}
}
return 0;
}
线段树
在这里插入代码片#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int a[50050]; //储存结点位置
struct node
{
int l,r,sum; //区间 区间人数
} b[150050];
void build(int l,int r,int i) //区间 结点
{
b[i].l=l;
b[i].r=r;
if(l==r)
{
b[i].sum=a[l]; //存储结点人数 //子结点
return ; //注意返回
}
int mid=(l+r)/2;
build(l,mid,2*i);
build(mid+1,r,2*i+1);
b[i].sum=b[2*i].sum+b[2*i+1].sum;
}
void add(int j,int num,int i) //位置 添加量 结点
{
if(b[i].l==b[i].r)
{
b[i].sum+=num;
return ;
}
else
{
b[i].sum+=num;
if(j<=b[i*2].r) //如果当前位置小于左子树的最大值 递归左子树
add(j,num,2*i);
else add(j,num,2*i+1);
}
}
int query(int l,int r,int i) //要查询的区间和结点
{
if(b[i].l==l&&b[i].r==r)
return b[i].sum;
int mid=(b[i].l+b[i].r)/2;
if(r<=mid)
return query(l,r,i*2);
else if(l>mid)
return query(l,r,i*2+1);
else
return query(l,mid,2*i)+query(mid+1,r,2*i+1);
}
int main()
{
int t,k=1;
scanf("%d",&t);
memset(a,0,sizeof(a));
while(t--)
{
int n;
scanf("%d",&n);
for(int i=1; i<=n; i++)
scanf("%d",&a[i]);
build(1,n,1);
char b[10];
int i,j;
printf("Case %d:\n",k++);
while(~scanf("%s",b))
{
if(strcmp(b,"End")==0)
break;
if(strcmp(b,"Query")==0)
{
scanf("%d%d",&i,&j);
printf("%d\n",query(i,j,1));
}
if(strcmp(b,"Sub")==0)
{
scanf("%d%d",&i,&j);
add(i,-j,1);
}
if(strcmp(b,"Add")==0)
{
scanf("%d%d",&i,&j);
add(i,j,1);
}
}
}
return 0;
}
树状数组
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
using namespace std;
int a[50010],c[50010]; //对应原数组 树状数组
int n;
int lowbit(int i)
{
return i&(-i);
}
void update(int x,int k) //单个元素更新
{
while(x<=n) //因为第x项更新了 所以从第前x项和到第n项和都要更新
{
c[x]+=k;
x+=lowbit(x);
}
}
int sum(int x) //求1-x区间的和
{
int res=0;
while(x>0) //lowbit(0)=0 死循环
{
res+=c[x];
x-=lowbit(x);
}
return res;
}
int main()
{
int t,k=1;
scanf("%d",&t);
while(t--)
{
memset(a,0,sizeof(a));
memset(c,0,sizeof(c));
scanf("%d",&n);
for(int i=1; i<=n; i++)
{
scanf("%d",&a[i]);
update(i,a[i]); //输入处置,相当于更新
}
char b[10];
int x,y;
printf("Case %d:\n",k++);
while(~scanf("%s",b))
{
if(b[0]=='E')
break;
if(b[0]=='Q')
{
scanf("%d %d",&x,&y);
printf("%d\n",sum(y)-sum(x-1));
}
if(b[0]=='A')
{
scanf("%d %d",&x,&y);
update(x,y);
}
if(b[0]=='S')
{
scanf("%d %d",&x,&y);
update(x,-y);
}
}
}
return 0;
}