在 OpenCV 中读取图片并转换为灰度图像的步骤非常简单。以下是一个完整的示例代码,展示了如何使用 Python 和 OpenCV 来完成这一任务。
示例代码
import cv2
- 读取图片
image_path = ‘path/to/your/image.jpg’ # 替换为你的图片路径
image = cv2.imread(image_path)
检查图片是否成功读取
if image is None:
print(“无法读取图片,请检查路径。”)
else:
# 2. 转换为灰度图
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 3. 显示原图和灰度图
cv2.imshow('Original Image', image)
cv2.imshow('Gray Image', gray_image)
# 等待按键,然后关闭所有窗口
cv2.waitKey(0)
cv2.destroyAllWindows()
# 4. 可选:保存灰度图
cv2.imwrite('path/to/save/gray_image.jpg', gray_image) # 替换为保存路径
代码解释
读取图片:
使用 cv2.imread() 方法读取图片。确保路径正确。
转换为灰度图:
使用 cv2.cvtColor() 方法,将彩色图像转换为灰度图。cv2.COLOR_BGR2GRAY 是用于从 BGR 转换到灰度的常量。
显示图像:
使用 cv2.imshow() 显示原图和灰度图。
保存灰度图(可选):
使用 cv2.imwrite() 保存转换后的灰度图。
注意事项
在运行代码前,确保安装了 OpenCV 库。
如果在 Jupyter Notebook 中运行,使用 %matplotlib inline 来显示图像,或者使用 matplotlib 来替代 cv2.imshow()。