全排列

在这里插入图片描述
「首先排列是有序的,也就是说[1,2] 和[2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方」。

可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,所以处理排列问题就不用使用startIndex了。

但排列问题需要一个used数组,标记已经选择的元素,如图橘黄色部分所示
在这里插入图片描述
可以看出叶子节点,就是收割结果的地方。

那么什么时候,算是到达叶子节点呢?

当收集元素的数组path的大小达到和nums数组一样大的时候,说明找到了一个全排列,也表示到达了叶子节点。

class Solution {
public:
    vector<vector<int>> res;
    vector<int> path;
    void backtracking(vector<int>& nums,vector<bool>& used){
        if(path.size()==nums.size()){
            res.push_back(path);
            return;
        }
        for(int ii=0;ii<nums.size();ii++){
            if(used[ii]==true) continue;// path里已经收录的元素,直接跳过
            used[ii]=true;
            path.push_back(nums[ii]);
            backtracking(nums,used);
            path.pop_back();
            used[ii]=false;
        }
    }
    vector<vector<int>> permute(vector<int>& nums) {
        vector<bool> used(nums.size(),false);
        backtracking(nums,used);
        return res;
    }
};

排列问题:

每层都是从0开始搜索而不是startIndex
需要used数组记录path里都放了哪些元素了

在这里插入图片描述
在这里插入图片描述

class Solution {
public:
    vector<vector<int>> res;
    vector<int> path;
    void backtracking(vector<int>& nums,vector<bool>& used){
        if(path.size()==nums.size()){
            res.push_back(path);
            return;
        }

        for(int ii=0;ii<nums.size();ii++){
            if((ii>0&&nums[ii-1]==nums[ii]&&used[ii-1]==false)||(used[ii]==true)) continue;
            used[ii]=true;
            path.push_back(nums[ii]);
            backtracking(nums,used);
            path.pop_back();
            used[ii]=false;
        }
    }
    vector<vector<int>> permuteUnique(vector<int>& nums) {
        vector<bool> used(nums.size(),false);
        sort(nums.begin(),nums.end());
        backtracking(nums,used);
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值