背包必备理论基础1

在这里插入图片描述

整体背包重点是01背包和完全背包。
而完全背包又是也是01背包稍作变化而来,即:完全背包的物品数量是无限的。
所以背包问题的理论基础重中之重是01背包

在这里插入图片描述
下面举一个例子:

背包最大重量为4。

物品 重量 价值
物品0 1 15
物品1 3 20
物品2 4 30

问背包能背的物品最大价值是多少?

二维dp数组01背包

确定dp数组以及下标的含义

对于背包问题,有一种写法, 是使用二维数组,即dp[i][j]
表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
在这里插入图片描述

确定递推公式

根据dp[i][j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

那么可以有两个方向推出来dp[i][j]、

1、 由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j] 。(背包放不下物品i了?)
2、由dp[i -1][j - weight[i]]推出,意思是当背包容量为j -weight[i]的时候不放物品i最大价值,那么dp[i - 1][j - weight[i]] + value[i](物品i的价值),就是背包放物品i得到的最大价值 。(背包可以放下物品i,看看剩余容量还能装下价值为多少的物品)
3、所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i -1][j - weight[i]] + value[i]);

dp数组如何初始化

关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱。

首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图:
在这里插入图片描述
在看其他情况。

由状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。

dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

代码如下:

for(int ii=0;ii<m;ii++){
	dp[ii][0]=0;
}
for(int jj=weight[0];jj<=bagWeight;jj++){
	dp[0][jj]=value[0];
}

在这里插入图片描述
dp[0][j] 和 dp[i][0] 都已经初始化了,那么其他下标应该初始化多少呢?

dp[i][j]在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,因为0就是最小的了,不会影响取最大价值的结果。

如果题目给的价值有负数,那么非0下标就要初始化为负无穷了。例如:一个物品的价值是-2,但对应的位置依然初始化为0,那么取最大值的时候,就会取0而不是-2了,所以要初始化为负无穷。

背包问题的物品价值都是正整数,所以初始化为0就可以了。

这样才能让dp数组在递归公式的过程中取最大的价值,而不是被初始值覆盖了。

如图:
在这里插入图片描述

vector<vector<int>> dp(weight.size()+1,vector<int>(bagWeight+1,0));
for(int jj=weight[0];jj<bagWeight;jj++){
	dp[0][jj]=value[0];
}

确定遍历顺序

在如下图中,可以看出,有两个遍历的维度:物品与背包重量
在这里插入图片描述
那么问题来了,先遍历 物品还是先遍历背包重量呢?

其实都可以!! 但是先遍历物品更好理解。

那么我先给出先遍历物品,然后遍历背包重量的代码。

// weight数组的大小 就是物品个数
for(int ii=1;ii<=weight.size();ii++){
	for(int jj=0;jj<=bagWeight;jj++){// 遍历背包容量
	    // 这个是为了展现dp数组里元素的变化,就是说当前背包容量小于当前物品重量
	    //直白点就是当前背包装不下当前物品
	   if (j < weight[i]) dp[i][j] = dp[i - 1][j]; 
	   //1、背包空间足以容纳当前物品和其他物品;(价值叠加)
	   //2、背包容纳当前物品但是剩余空间不能容纳其他物品;(当前物品价值高)
	   //3、背包可以容纳其他物品,但剩余空间容不下当前物品;(当前物品价值低)
	   else dp[ii][jj]=max(dp[ii-1][jj],dp[ii-1][jj-weight[ii]]+value[ii]);
	}
}

在这里插入图片描述

举例推导dp数组

来看一下对应的dp数组的数值,如图:
在这里插入图片描述
最终结果就是dp[2][4]。

做动态规划的题目,最好的过程就是自己在纸上举一个例子把对应的dp数组的数值推导一下,然后在动手写代码!

测试代码:

void test_2_wei_bag_problem1() {
    vector<int> weight = {1, 3, 4};
    vector<int> value = {15, 20, 30};
    int bagWeight = 4;

    // 二维数组
    vector<vector<int>> dp(weight.size() + 1, vector<int>(bagWeight + 1, 0));

    // 初始化
    for (int j = weight[0]; j <= bagWeight; j++) {
        dp[0][j] = value[0];
    }

    // weight数组的大小 就是物品个数
    for(int i = 1; i < weight.size(); i++) { // 遍历物品
        for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
            if (j < weight[i]) dp[i][j] = dp[i - 1][j];
            else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

        }
    }

    cout << dp[weight.size() - 1][bagWeight] << endl;
}

int main() {
    test_2_wei_bag_problem1();
}


动态规划(英语:Dynamic programming,简称 DP)是一种在数学、管理科学、计算机科学、经济学和生物信息学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。

动态规划常常适用于有重叠子问题和最优子结构性质的问题,并且记录所有子问题的结果,因此动态规划方法所耗时间往往远少于朴素解法。

动态规划有自底向上和自顶向下两种解决问题的方式。自顶向下即记忆化递归,自底向上就是递推。

使用动态规划解决的问题有个明显的特点,一旦一个子问题的求解得到结果,以后的计算过程就不会修改它,这样的特点叫做无后效性,求解问题的过程形成了一张有向无环图。动态规划只解决每个子问题一次,具有天然剪枝的功能,从而减少计算量。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值