动态规划总结

参考来源:代码随想录

在这里插入图片描述

基础概念

状态推导:动态规划中每一个状态一定是由上一个状态推导出来的。

动规五部曲:

  1. 确定dp[i]或者dp[i][j]的含义。
  2. 递推公式:比如斐波那契数列 dp[i] = dp[i-1] + dp[i-2]。
  3. 初始化dp数组:dp数组的第一个元素初始化,dp行列的初始化和其他位置初始化。
  4. 确定遍历顺序:从前到后 或者 从后到前。
  5. 打印:根据打印结果对比自己的预期判断是否解题正确。

debug:

  1. 打印dp日志和自己想的一样(思路出错):更换递推公式、修改初始化、遍历顺序和题目要求不符。
  2. 打印dp日志和自己想的不一样(细节执行出错):检查递推公式书写、初始化、打印顺序和预期的是不是一致。

具体应用的问题

基础问题

从状态的传递分析递推公式。当前点的值是根据之前的值推导而来。
求方法:dp[i] = dp[i-1] + dp[i-2];
求不同路径:dp[i][j] = dp[i-1][j] +dp[i][j-1]; dp[i][j]表示从(0, 0)到(i, j)的路径方法。
求整数拆分:dp[i] = max({ dp[i], (i-j) * j, dp[i-j] * j});
求二叉搜索树的个数:dp[i] = dp[j-1] * dp[i-j];

背包问题

0-1背包

每个物品的数量只有一个
二维数组:背包,物品遍历顺序任意
滚动数组:必须先物品再背包,背包的遍历顺序为倒序。

dp[j]含义:容量为j的背包所背的物品价值的最大值。
dp[j] = max(dp[i], dp[i-weight[i]] + value[i]);

应用:

  1. 背包装物品的最大价值数:dp[j] = max(dp[j], dp[j-weight[j]]+vaule[i]);
  2. 装满背包方法数:dp[j] += dp[j-nums[i]];
  3. 能否装满背包:dp[j] = max(dp[j], dp[j-nums[j]]+vaule[i]); return dp[last] == target;
  4. 装满背包的最小物品数:dp[j] = min(dp[j], dp[j-nums[i]]+1);
完全背包

每个物品的数量有无数个
滚动数组的背包和物品的遍历顺序任意,内层循环体必须从小到大,有累加效果。

应用:

  1. 排列数:先背包再物品,给出一个集合和目标值。
  2. 组合数:先物品再背包,给出一个集合和目标值。
  3. 求满足的最小方法数
  4. 单词拆分:截取字串与字符数组匹配再结合截取位置的dp值判断当前位置的dp值。

相关题目:
代码随想录
在这里插入图片描述

打家劫舍问题

  1. dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]。
  2. 递推公式:dp[i]是由偷还是不偷第i房间决定的
    如果偷第i房间,那么dp[i] = dp[i - 2] + nums[i] ,相邻的房间不偷,偷i-2个房间,获得金额是i-2房间最多偷窃的金额 加上 当前房间的金额。
    如果不偷第i房间,那么dp[i] = dp[i - 1],即可以考虑前一个,第i-1房间。
    然后dp[i]取最大值,即dp[i] = max(dp[i - 2] + nums[i], dp[i - 1])。

打家劫舍Ⅰ:房间是一列,不能偷相邻的房间 dp[i] = max(dp[i - 2] + nums[i], dp[i - 1])。
打家劫舍Ⅱ:房间组成一个环,不能偷相邻的房间 i的范围就要考虑 从 [0, n-1] 和 从 [1, n],即考虑第一个房间不考虑最后一间房,考虑最后一间房不考虑第一间房。
打家劫舍Ⅲ:房间组成一棵树。考虑左孩子和右孩子。树的递归三部曲和动规五部曲的结合。

股票买卖问题

  1. dp[i][j]:dp[i][0] 表示第i天持有股票手里最多的钱,dp[i][1] 表示第i天不持有股票手里最多的钱。持有的状态 不等于 买入的状态,持有可能是今天买入,也可能是之前买入。
  2. 递推公式:如何确定dp[i][0] 和 dp[i][1] 的值?
    dp[i][0]:第i天持有股票手里最多的钱,有两种情况。第一种,第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i][0] = dp[i - 1][0]。第二种,第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i]。故dp[i][0] = max(dp[i - 1][0], -prices[i])。
    dp[i][1]:第i天不持有股票手里最多的钱。有两种情况,第一种,i-1天已经不持有,保持现状,即dp[i][1] = dp[i-1][1]。第二种,第i-1天持有,第i天卖出去,手里的钱是第i-1天手里持有的钱加上第i天卖出的钱,即dp[i][1] = dp[i-1][0] + prices[i]。故dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0])。

买卖股票的最佳时机:只能买卖一次,dp[i][0] = max(dp[i-1][0], -prices[i]); dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i]).
买卖股票的最佳时机Ⅱ:可以买卖多次,dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]); dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i]);
买卖股票的最佳时机Ⅲ:最多可以完成两笔交易,每个节点有五个状态。分别是状态不变、第一次持有、第一次不持有、第二次持有和第二次不持有。dp[i][0] = dp[i-1][0]; dp[i][1] = max(dp[i-1][1], -prices[i]); dp[i][2] = max(dp[i-1][2], dp[i-1][1] + prices[i]); dp[i][3] = max(dp[i-1][3], dp[i-1][i-1][2] - prices[i]); dp[i][4] = max(dp[i-1][4], dp[i-1][3] + prices[i]);
买卖股票的最佳时机Ⅳ:最多可以完成k笔交易,为什么上一题最多完成两笔交易是五个状态,所以最多k笔交易是2*k + 1个状态,同Ⅲ的赋值。
买卖股票的最佳时机(含冷冻期):卖出股票后,无法在第二天买入。有四个状态,买入股票、卖出股票、经历冷冻期、可以再次买入股票。dp[i][0] = max(dp[i-1][0], max(dp[i-1][2] - prices[i], dp[i-1][3] - prices[i])); dp[i][1] = dp[i-1][0] + prices[i]; dp[i][2] = dp[i-1][1]; dp[i][3] = max(dp[i-1[p2[, dp[i-1][3]);
卖出股票的时机(含手续费):卖出时候需要添加手续费。保持的状态dp[i][0]和卖出时机Ⅱ一致,不保持状态需要加入手续费dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i] - fee);

子序列问题

子序列(不连续):if(nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1)
子序列(连续):if(nums[i + 1] > nums[i]) dp[i+1] = dp[i] + 1;
编辑距离

  • 最长重复子数组:子数组是连续的。dp[i][j]:以i-1结尾的text1和以j-1结尾的text2的最长重复子数组。if(text1[i-1] == text2[j-1]) dp[i][j] = dp[i-1][j-1] + 1; else dp[i][j] =0;
  • 最长公共子序列:不要求连续。if(text1[i-1] == text2[j-1]) dp[i][j] = dp[i-1][j-1] + 1; else dp[i][j] = max(dp[i-1][j], dp[i][j-1]);

在这里插入图片描述
回文:dp[i][j]表示字符串[i, j]内回文串的个数或者最长回文串的长度。如,求字符串s中的最长回文子序列。
在这里插入图片描述

  • 35
    点赞
  • 54
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
01背包问题是动态规划中的一个经典问题,它的解法也非常经典,下面是我对该问题的动态规划总结。 1. 状态定义 定义一个二维数组dp[i][j],其中i表示当前考虑到第i个物品,j表示当前背包容量为j,dp[i][j]表示在前i个物品中,背包容量为j时的最大价值。 2. 状态转移方程 对于每个物品,我们可以选择将其放入背包,也可以选择不放入背包,因此状态转移方程如下: 如果不将第i个物品放入背包,则 dp[i][j] = dp[i - 1][j] 即前i-1个物品已经在容量为j的背包中的最大价值就是dp[i - 1][j]。 如果将第i个物品放入背包,则 dp[i][j] = dp[i-1][j-w[i]] + v[i] 即前i-1个物品在容量为j-w[i]的背包中的最大价值加上第i个物品的价值v[i]。 最终的状态转移方程为: dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]) 3. 边界条件 当物品数量为0时,dp[0][j]都等于0;当背包容量为0时,dp[i][0]都等于0。 4. 求解最优解 最终的最大价值为dp[n][W],其中n表示物品数量,W表示背包容量。 5. 代码实现 以下是01背包问题的动态规划代码实现,其中w和v分别表示物品的重量和价值,n和W表示物品数量和背包容量: ```python def knapsack(w, v, n, W): dp = [[0] * (W+1) for _ in range(n+1)] for i in range(1, n+1): for j in range(1, W+1): if j < w[i-1]: dp[i][j] = dp[i-1][j] else: dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i-1]] + v[i-1]) return dp[n][W] ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值