传统神经网络(NN)
卷积神经网络(CNN)主要处理图像
三维模型:h* w* c
整体架构
输入层:如28* 28* 1
卷积层:提取特征
池化层:压缩特征
全连接层:如784*50
卷积
图像分区-划小区找到特征值
第一个区域
Fliter(卷积核)
W0 = (0+2+0)+b+1
其中0+2+0是内积
第二个区域
步长为2
需多次卷积:
步长:
步长小,得到特征细腻
图像一般为1
文本处理多一点
卷积核一般3* 3
边缘特征:zero-padding
给边界特征提权,给边界填一圈0
卷积核个数=特征图个数
P是那一圈0
卷积参数共享:一样的参数用一个
池化层pool
一种压缩,如224* 224 *64压缩为112 *112 *64
最大池化,maxpolling,取最大值而已,大值权重高
2次卷积1次池化
CONV卷积层
RELU
POOL
FC:全连接层
16层经典网络-VGG
保底的Resnet改进网络,可增加网络层数,无提升层忽略,有提升层计入
建议工程使用Resnet
感受野越大越好