TensorFlow2.0.0_课时26-37_卷积神经网络(CNN)

传统神经网络(NN)
卷积神经网络(CNN)主要处理图像
三维模型:h* w* c

整体架构
输入层:如28* 28* 1
卷积层:提取特征
池化层:压缩特征
全连接层:如784*50

卷积
图像分区-划小区找到特征值

第一个区域
在这里插入图片描述
Fliter(卷积核)
W0 = (0+2+0)+b+1
其中0+2+0是内积

第二个区域
步长为2
在这里插入图片描述
需多次卷积:
在这里插入图片描述

步长:
步长小,得到特征细腻
图像一般为1
文本处理多一点

卷积核一般3* 3

边缘特征:zero-padding
给边界特征提权,给边界填一圈0
在这里插入图片描述

卷积核个数=特征图个数

在这里插入图片描述
P是那一圈0
卷积参数共享:一样的参数用一个

池化层pool
一种压缩,如224* 224 *64压缩为112 *112 *64
最大池化,maxpolling,取最大值而已,大值权重高
在这里插入图片描述

在这里插入图片描述
2次卷积1次池化
CONV卷积层
RELU
POOL
FC:全连接层

16层经典网络-VGG
在这里插入图片描述

保底的Resnet改进网络,可增加网络层数,无提升层忽略,有提升层计入
建议工程使用Resnet
在这里插入图片描述

感受野越大越好
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值