Python自动化小技巧03——自动统计文件里面的文字和词汇频数

本文介绍如何使用Python脚本统计文本中字符及词语的出现频率,并通过实例演示了统计过程及结果展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有时候生活中会遇到这样的问题,需要统计文档里面的出现的字符的次数,或者是所有词语出现的次数,我们需要简便的,自动化的办法去解决。Python脚本是最好的解决办法。

本案例使用的都是读取txt文件,然后去统计其词频,如果你是word文档,可以把文档中的字符复制到txt文件里面,然后再运行代码。

上代码


统计文字出现次数

这里演示的案例文档是我下载的一本玄幻小说 “蛊真人.txt”,我们来统计里面出现的文字的个数。

import pandas as pd

f=open('蛊真人.txt','r')
txt=f.read()
d={}
for word in txt:
    d[word]=d.get(word,0)+1

biaodian='‘’,。、!?;:()“” '
for i in biaodian:
    del d[i]

f.close()

df=pd.DataFrame([d]).T
df=df.iloc[:,0].sort_values(ascending=False)
df.to_excel('字符统计.xlsx')

上述代码先打开文件,创建了一个空字典,然后将文字一个一个遍历进行统计,已经存在字典里面的文字的值就+1,没有就返回0然后+1。

然后将中文常见的标点写出字符串,将他们都从字典里面一一删除。

最后利用我们的pandas库将字符排个序,存成excel文件。运行后这个文件夹下会多出一个excel文件,结果如下:

 空白也算在里面了....不过问题不大可以手动删除。可以看到除了空白外,出现次数最多的字是“的”,很符合中文的使用情况。


统计词语出现次数

如果需要统计词语,那么就需要借助jieba库进行切词,然后再进行差不多的操作。

import pandas as pd
import jieba

f=open('蛊真人.txt','r')
txt=f.read()
txt=jieba.lcut(txt)

d={}
for word in txt:
    d[word]=d.get(word,0)+1

biaodian='‘’,。、!?;:()“” '
for i in biaodian:
    del d[i]

f.close()

df=pd.DataFrame([d]).T
df=df.iloc[:,0].sort_values(ascending=False)
df.to_excel('词语统计.xlsx')

运行结果如下:

                                 

 可以看见统计出来的不再全是一个一个的字,有词语的出现了。

前面出现频率高的还是中文里面常见的副词虚词,“方源”是书里面的主角,所以出现次数也多.....

后面频率低的都是各种词语。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阡之尘埃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值