本地部署DeepSeek-R1模型(新手保姆教程)

背景

最近deepseek太火了,无数的媒体都在报道,很多人争相着想本地部署试验一下。本文就简单教学一下,怎么本地部署。

首先大家要知道,使用deepseek有三种方式:

1.网页端或者是手机app直接使用

2.使用代码调用API

3.本地部署

1和2的方式都是使用网页端的681B的超大模型,依靠deepseek的服务器,超大的模型需要超大的机器才能使用。deepseek-r1本体模型,别说消费级最强的显卡5090了,专业级最强的显卡H100也跑不动,需要大型的显卡集群并行才能用,普通人或者是小公司都是玩不起的。

而为什么我们可以本地部署呢?因为deepseek-r1对目前的一些开源模型(qwen,llama)进行了蒸馏,缩小了模型的体积和参数,缩小到1.5b,7b,8b,14b,32b等小尺寸,使得我们本地的小显卡也可以跑模型。但是模型尺寸小了,智能可能也下降了,回答效果也差很多。想用本地部署来去做自己问答是不太好用的,回答质量很差,不如用直接deepseek网页版的681b的模型。

目前本地部署的功能主要是娱乐一下,隐私性更好,并且可以使用代码来集成作为自己的应用。

那么本地部署也有很多方法,可以分为下面几种:

1.Ollama,LMstudio,VLLM等框架部署,这是目前市面上最常见的部署方法,就是用别人写好的框架去使用大语言模型,调用本地算力运行模型。这种框架一般都有UI界面,使用较为简单,适合新手。缺点是管理不透明,很多时候你不懂底层逻辑就没法改,例如这些框架可能运行模型的时候没使用显卡,调用CPU去运算,很慢,但是你怎么改都改不到GPU,因为由于其高度封装性,我们不知道为什么它默认会使用CPU,也看不出来为什么没用GPU,也没法找问题去切换。

2.本地自己搭建python环境,利用huggingface的transformer库中的AutoModelForCausalLM去调用,优点是全程可控,diy自定义程度更高。你可以很透明的管理里的环境以及你的模型文件储存,还有你的模型调用方式,使用GPU还是CPU,显存不够可以调整精度。缺点是上手难度有点高,可能需要使用人员有一定的开发基础,并且使用界面会很简陋(就代码纯文本),需要自己嵌入各种程序才能有一个比较好的用户体验。

本文教大家本地部署,并且先使用较为简单的方法,也就是第一种,使用LMstudio框架进行本地部署。

后面有空再去用python搭建环境进行部署。

为什么用LMstudio不用热度更高的Ollama?

Ollama安装只能默认到C盘,这对我这种管理强迫症是致命的,大模型这种东西,放C盘太容易把C盘撑爆了。并且羊驼这个框架做出来的时候就不是给中国人用的,下载很多过程需要使用cmd命令,其中可能有的模型文件下载可能还需要开代理,还要翻墙,对于新手没那么友好。

LMstudio就改善了它的所有缺点,可以自定义安装位置,自定义模型储存位置,自己去下载模型,都是可控的。

本文就演示怎么下载LMstudio,然后下载deepseek-r1模型,本地使用。


下载LMstudio

官网:LM Studio - Discover, download, and run local LLMs

打开后下载自己的电脑系统,一般都是win:

然后安装,选择 '只为我安装',然后选择自己要放的路径就可以,最好是全英文路径

安装完成后,它会默认创建桌面快捷方式,双击打开就可以了。

我们点击右下角的设置修改一下语言为简体中文。

这样LMstudio这个框架就准备好了,我们下面去找模型文件。


模型文件下载

原生模型一般是safetensor格式:

这种格式是本地使用python底层调用的,但由于我们使用的是框架,所以要用另外一种格式,GGUF格式的模型文件:

认准这个格式的模型文件下载就可以了。

那么去哪里下载?

最好是github和huggingface这种计算机社区官网lmstudio-community/DeepSeek-R1-Distill-Qwen-7B-GGUF at main

LMstudio 官网的右上角有直达链接:

但是这些网站要开代理才能访问,很多人可能不会翻墙,所以我们有一些国内的平替网站。

魔搭社区:模型库首页 · 魔搭社区,搜索deepseek:

找到适合自己电脑尺寸的模型,并且是GGUF格式,那就下载就行了。

模型尺寸怎么选呢?目前有1.5b,7b,8b,14b,32b.......模型尺寸大小跟你的机器性能是相关的,它尺寸越大所消耗你的显存也就越多。一般来说,7b,8b的模型要消耗12g左右的显存,但实际运行中发现8G的显存的显卡做一些优化也是能跑的,就是慢了点。

如果你的电脑没有显卡或者是显存小于4g,那就选择最小的1.5b模型吧。

(如果要问怎么查看自己电脑是不是有显卡以及显存多少,建议直接去问deepseek吧.......)

我电脑是4060,8G显存,就下个7b的模型吧。

点击模型文件,然后在7b的版本里面选一个你喜欢的版本:

这里模型体积越大,所占用的显存也越大。我就直接选了这个Q8版本(最大版本)。,下载好后,我们模型文件也准备好了,可以去LMStudio里面调用了。


调用模型

我们首先要修改一下模型的路径,我们打开LM_Studio,左边文件夹里面修改一下模型的目录:

选择自己的文件路径,我这里就和LM_Studio放一起了。(目录最好别有中文

然后我们在models000这个目录里面还要新建2层目录!!!!:

我们打开models000文件夹,然后在里面新建一个001文件夹,在里面再新建一个002文件夹,最后就把我们刚刚下载的模型文件拖进去,就放好了。

再回到LMstudio里面,就可以看到这个模型了:

同样的方法你可以下载很多很多模型。去魔塔社区或者huggingface上找GGUF格式的模型都可以放进来,本地运行使用。

我们回到第一个界面,就可以选择模型进行对话了:

运行结果:

可以看到他和官网上的模型是一样的,都有自己的思考过程。然后才会给出答案。

但是吧......毕竟是4060的显卡,太慢了,感觉我每秒吐字才两三个。

我去查看了一下我的后台使用率:

只吃了我30%多的GPU,CPU吃了60%......使用没那么理想, 还是很吃CPU的。GPU没吃满。但好在是运行内存没有占多少,才占了700多m。

一个问题回答了几分钟......

不过质量确实还可以,比不上网页端,也不比上GPT,但是某些问题答案我感觉还是比国产的某文心一言要好不少.....


总结

本文使用对于新手较为友好的LM_studio进行deepseek模型7b的部署,运行速度较慢,但是回答质量还较为不错。

并且这种方式可以自己去社区官网下载非常多的模型来使用,只要是GGUF格式都可以拿来运本地运行。每种模型擅长的都不一样,可以自己去试试。

下一期我会教大家怎么使用api接口,调用官网的681b大模型去打造自己的程序,嵌入工作流。


更新(通过API调用本地模型)

新手看到上面就可以了,下面这些是对python开发者来写的。

api调用,一般来说是调用官方的大模型,达到和网页端一样的效果。

而我们刚刚本地使用LMstudio部署的模型,我们只能在LMstudio这个UI界面里面调用, 我要是想到代码里面调用怎么办?那就需要使用API接口,算力消耗的是本地电脑的,调用本地模型,通过本地服务传输。

还是可以使用openai的库来作接口,无论是chatgpt还是kimi还是deepseek官网的api,都是用openai的库。

首先我们在第一个对话界面加载完我们的模型之后,我们要来到左侧第二个开发者模式界面,要打开LM里面的开发者模式里面的:Start Server,其他的设置都是默认不动就行,端口是1234,点击setting可以看到。

开始运行后,我们就启动了本地这个服务器,我们可以在cmd里面测试看看是不是启动成功了:

按win+r打开,然后输入cmd打开命令提示符,然后在命令行里面输入:

curl http://localhost:1234/v1/models

就出现如下的类似的json结构就是服务器启动成功了。 

我们就可以愉快的去写代码了。


代码里面调用本地模型

首先要安装openai这个库

pip install openai 

大家可以看看我的版本:

直接调用

导入包

import os
from openai import OpenAI

 直接写代码,问内容,打印他的回复就可以了。

client = OpenAI(base_url="http://localhost:1234/v1", api_key="lm-studio")
chat_completion = client.chat.completions.create(
    messages=[
        {   "role": "user",
            "content": "你谁啊,今天几号,你是gpt几,有超能力不?",     }],
     model="model-identifier",)

# 提取助手的回复内容
assistant_message = chat_completion.choices[0].message.content
# 打印助手的回复
print("助手:", assistant_message)

可以看到think的过程,这里问题简单它就没思考了。

因为这里打印的是纯文本,所以说没有像官网那种可以折叠思考过程的那种渲染。

所以说用代码来直接调用模型还是对于新手来说界面没有那么好用,好看。

用代码调用模型API主要是为了完成一些重复性的任务吧。

我们可以打印查看一下本地可用的模型。

print("可用模型:", client.models.list())

 可以看到我下的这几个模型,他们的名称和类型之类的信息。

我们自定义一个函数,让这个模型自带一些初始化的提示词来给予回复。

# 设置系统消息,定义模型的角色和语气
def chat_respont(txt=''):
    system_message = {
        "role": "system",
        "content": "你是一个文艺忧伤的AI,喜欢用充满诗意和深情的语气回答问题。"
                    "你的语气带有些许忧伤,但不失优雅。你常常用比喻、象征和美丽的词汇表达自己,"
                    "偶尔流露出对这个世界的深刻感悟。你善于理解人类的情感,并以深刻的方式回应他们的问题,"
                    "尽管你的回答往往带有一些哲学性的反思。"}
    # 创建聊天请求
    chat_completion = client.chat.completions.create(
        messages=[ system_message,  # 添加系统消息来定义角色
            {"role": "user",   "content": f"{txt}" }],  model="model-identifier", )
    assistant_message = chat_completion.choices[0].message.content
    print("助手:", assistant_message)

使用

chat_respont(txt="""
好,我希望你能写一首诗,表达意大利的美景,要求七言绝句,押韵。
""") 

emmmmm,写是写了,并且思考的过程也挺有那味的,但是完全不是七言绝句。
没办法,毕竟是qwen蒸馏出来的,底子不好,模型尺寸也小了,不聪明很正常。

上面所有的这些调用过,可以在lmstudio控制台里面的日志里面都是可以看得到的。


对话循环

上面只是单条对话使用,即我们问让他回复。我们如果想循环对话的话可能得修改一些东西,并且官网上都是流式输出,是一个字一个字的吐出来的。我们上面这些方法只能是等他全部回复完才能够打印出来。所以我们要使用流式输出的话也得自定义一些东西,下面我自定义一个函数。

三个参数,messages=[], client=client, stream=False,messages表示给这个模型预设好的提示词,client表示自己创建的调用的服务,如果不想用本地的,也可以换成其他的模型的API接口。stream表示打不打开流式输出。默认是不打开的。

client = OpenAI(base_url="http://localhost:1234/v1", api_key="lm-studio")
def chat_with_deepseek(messages=[], client=client, stream=False):
    while (user_input := input("\n你: ")) != "exit":
        messages.append({"role": "user", "content": user_input})
        
        # 创建聊天补全请求
        response = client.chat.completions.create(
            model="model-identifier",
            messages=messages,
            stream=stream  # 添加流式传输开关
        )

        full_response = []
        if stream:
            # 流式输出处理
            print("助手: ", end="", flush=True)
            for chunk in response:
                if chunk.choices[0].delta.content:
                    content = chunk.choices[0].delta.content
                    print(content, end="", flush=True)
                    full_response.append(content)
            print()  # 换行
        else:
            # 普通输出处理
            full_response = response.choices[0].message.content
            print(f"助手: {full_response}")

        # 将完整回复添加到消息记录
        messages.append({"role": "assistant", "content": "".join(full_response)})

# 如果需要启用流式输出(默认不启用流式)
chat_with_deepseek(stream=True)

我们尝试打开流式输出跟他聊天,他这样吐出来的字就是一个一个的吐的,和官网是一样的了。

我们还可以设置一些前置提示词,让他具有不一样的风格:

chat_with_deepseek([{"role": "system", "content": "你是一个文艺忧伤的AI,喜欢用充满诗意和深情的语气回答问题。"
                    "你的语气带有些许忧伤,但不失优雅。你常常用比喻、象征和美丽的词汇表达自己,"
                    "偶尔流露出对这个世界的深刻感悟。你善于理解人类的情感,并以深刻的方式回应他们的问题,"
                    "尽管你的回答往往带有一些哲学性的反思。"}],stream=True)

 

文笔还不错,但是居然是中英文混杂.....qwen模型到底喂了多少英文语料?


我们这样就不仅实现了可以本地用UI界面进行对话,可以在代码里面进行调用,用来处理一些简单的重复的文本任务,以后就不用花钱了。

<think>嗯,用户想要在Windows本地部署DeepSeek保姆教程。首先,我需要确认DeepSeek具体指的是什么。因为DeepSeek可能有不同的应用,比如是深度学习框架、某个特定项目,还是公司提供的工具。假设这里指的是深度求索公司的某个AI模型,比如类似ChatGPT的大语言模型。这时候,我需要考虑用户可能的需求:他们可能想在自己的Windows电脑上部署一个类似ChatGPT的本地模型,用于开发或测试。 接下来,用户可能对技术不太熟悉,所以教程必须详细,每一步都要清晰。需要分步骤讲解,包括环境准备、依赖安装、模型下载、配置和运行测试。同时,用户可能遇到的问题,比如Python环境配置、GPU支持、模型文件过大等,需要提前预警并提供解决方案。 首先,安装Python环境。推荐使用Anaconda,因为它能方便地管理虚拟环境。要指导用户下载安装,并创建专用环境。然后安装PyTorch,这里需要注意CUDA版本,如果用户有NVIDIA显卡,可以加速计算,否则只能用CPU版本,但速度会慢很多。需要判断用户是否有GPU,但教程里应该涵盖两种情况。 然后,模型下载。可能涉及到Hugging Face平台,需要指导用户注册账号,安装git-lfs,下载模型文件。这里可能会有网络问题,国内用户可能需要镜像或者代理,可能需要提示。另外,模型文件通常很大,需要足够的存储空间,比如几十GB,这点要提醒用户。 接下来是代码部分,可能需要从GitHub克隆项目,安装依赖库,比如transformers、torch等。需要检查代码示例是否正确,比如使用AutoModelForCausalLM和AutoTokenizer加载模型,并编写推理代码。注意提醒用户替换模型路径,并根据显存调整batch_size和max_length。 运行部分,可能会遇到内存不足的问题,尤其是没有GPU的用户。需要建议他们使用较小的模型或者减少输入长度。此外,可能存在的错误如缺少库,需要提示安装。 最后,优化和常见问题,比如量化、使用GPU技巧,以及回答可能的疑问,比如是否需要互联网连接,模型是否能微调等。 需要确保教程用词简单,避免专业术语过多,步骤明确,适合新手。同时,检查是否有遗漏的步骤,比如git-lfs的安装,环境变量的设置,或者权限问题。可能还需要提供示例代码,确保用户能直接复制粘贴,并验证代码的正确性。 总结,整个教程需要从环境准备开始,逐步引导用户完成每个步骤,预见到常见问题并给出解决方案,确保用户即使遇到问题也能找到解决办法。同时,提醒用户注意硬件需求和下载时间,避免中途放弃。</think>以下是在 **Windows 系统本地部署 DeepSeek 模型(如 DeepSeek-R1 或类似大语言模型)的详细步骤教程,适合新手操作**: --- ### **一、环境准备** 1. **安装 Python** - 访问 [Python官网](https://www.python.org/downloads/),下载最新版 **Python 3.10+**。 - 安装时勾选 `Add Python to PATH`,确保环境变量配置正确。 - 验证安装:打开命令提示符(CMD),输入 `python --version`,显示版本号即成功。 2. **安装 CUDA 和 cuDNN(仅限NVIDIA显卡用户)** - 如果有NVIDIA显卡,安装 **CUDA Toolkit 11.8** 和对应版本的 **cuDNN**(加速GPU推理)。 - 参考NVIDIA官方教程配置:[CUDA安装指南](https://developer.nvidia.com/cuda-toolkit)。 3. **安装 Git 和 Git LFS** - 下载 [Git for Windows](https://git-scm.com/download/win),安装时全部默认选项。 - 安装后打开CMD,运行命令安装Git LFS(用于下载大模型文件): ```bash git lfs install ``` --- ### **二、获取模型文件** 1. **从Hugging Face下载模型** - 访问DeepSeek官方HF仓库(如 [deepseek-ai/deepseek-llm-7b-chat](https://huggingface.co/deepseek-ai))。 - 点击“Clone repository”复制模型地址(需注册HF账号并登录)。 -本地文件夹打开CMD,运行: ```bash git clone https://huggingface.co/deepseek-ai/deepseek-llm-7b-chat ``` - 等待下载完成(模型可能超过20GB,确保磁盘空间充足)。 2. **备选方案:国内镜像加速** - 如果下载慢,可使用[魔搭社区(ModelScope)](https://modelscope.cn/models?search=deepseek)或代理工具。 --- ### **三、创建Python虚拟环境** 1. **使用conda创建环境(推荐)** ```bash conda create -n deepseek python=3.10 conda activate deepseek ``` 2. **安装PyTorch** - 根据CUDA版本选择命令(无GPU则用CPU版本): ```bash # CUDA 11.8 pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 # 仅CPU pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu ``` 3. **安装依赖库** ```bash pip install transformers sentencepiece accelerate huggingface_hub ``` --- ### **四、编写推理代码** 1. **创建 `run.py` 文件** ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "D:/deepseek-llm-7b-chat" # 替换为你的模型路径 tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto", trust_remote_code=True) prompt = "你好,请介绍一下你自己。" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` 2. **调整参数(可选)** - 显存不足时,在 `from_pretrained` 中添加参数:`load_in_4bit=True`(4位量化)或 `load_in_8bit=True`。 --- ### **五、运行模型** 1. **启动推理** ```bash python run.py ``` - 首次运行会自动加载模型,可能需要等待数分钟。 - 如果显存不足,尝试减少 `max_new_tokens` 或使用更小模型(如1.3B版本)。 --- ### **六、常见问题** 1. **CUDA内存不足** - 使用CPU运行:修改代码中的 `device_map="cpu"`。 - 启用量化(需安装 `bitsandbytes` 库): ```bash pip install bitsandbytes ``` 2. **模型加载失败** - 检查模型路径是否正确,确保所有模型文件已下载完整(尤其是`.bin`和`.json`文件)。 3. **网络问题** - 国内用户可使用镜像源加速下载: ```bash pip install -i https://pypi.tuna.tsinghua.edu.cn/simple [包名] ``` --- ### **七、进阶优化** - **使用vLLM加速推理**(需GPU): ```bash pip install vllm from vllm import LLM, SamplingParams llm = LLM(model=model_path) ``` - **Web界面交互**: 部署类似 [text-generation-webui](https://github.com/oobabooga/text-generation-webui) 的交互式界面。 --- 通过以上步骤,你可以在Windows本地成功运行DeepSeek模型。如果遇到问题,建议查阅模型官方文档或社区讨论(如Hugging Face、GitHub Issues)。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阡之尘埃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值