leetcode刷题/每日随机一题 剑指 Offer 42. 连续子数组的最大和

剑指 Offer 42. 连续子数组的最大和

题意:

输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。

要求时间复杂度为O(n)。

示例1:

输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
解题思路:

利用动态规划思想

  • 定义count用来存储数组的值,寻找最大值;还有一个res来存储最大值;
  • 如果当前下标小于0,说明如果加进去会让res变小,那么需要先记录当前的res;
  • 如果count小于0,就让count = nums[j],因为小于0再加上其它数是相当于减少,所以要舍弃
  • 直到 j 走到末尾,循环结束.
代码:
class Solution {
public:
    int maxSubArray(vector<int>& nums) {
	int j = 1;
	int count = nums[0];
	int res = INT_MIN;
	while (j < nums.size())
	{
		if (nums[j] < 0)
		{	
			if (count > res)
				res = count;
		}
		if (count < 0)
			count = nums[j];
		else
			count += nums[j];
		j++;
	}
	if (count > res)
		res = count;   
    return res;
    }
};
运行结果:

运行结果

总结:

这道题是典型的动态规划问题,怎么样去缩减和扩大.只要想明白怎么处理count的情况,基本就可以完成;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

公仔面i

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值