为什么使用One-Hot独热编码
- 在机器学习算法中,我们经常会遇到分类特征,例如:人的性别有男女,祖国有中国,美国,法等。 这些特征值并不是连续的,而是离散的,无序的。
- 如果要作为机器学习算法的输入,通常我们需要对其进行特征数字化。什么是特征数字化呢?例如:性别特征:[“男”,“女”],祖国特征:[“中国”,"美国,“法国”],运动特征:[“足球”,“篮球”,“羽毛球”,“乒乓球”]。假如某个样本(某个人),他的特征是 [“男”,“中国”,“乒乓球”] ,我们可以用 [0,0,4] 来表示,但是这样的特征处理并不能直接放入机器学习算法中。因为类别之间是无序的。
什么是One-Hot独热编码
- 独热编码即 One-Hot 编码,又称一位有效编码。其方法是使用N位状态寄存器来对N个状态进行编码,每个状态都有它独立的寄存器位,并且在任意时候,其中只有一位有效。
- One-Hot 编码是分类变量作为二进制向量的表示。
- 要求将分类值映射到整数值。
- 除了整数的索引之外,它都是零值,它被标记为1。
案例
示例1
- 如表所示,假设有四个样本(行),每个样本有三个特征(列)。
- 上述feature_1有两种可能的取值,比如是男/女,这里男用1表示,女用2表示。feature_2 和 feature_3 各有4种取值(状态)。
- one-Hot 编码就是保证每个样本中的单个特征只有1位处于状态1,其他的都是0。
- 上述状态使用One-Hot编码表示:
示例2
- 按照 N位状态寄存器 来 对N个状态 进行编码的原理进行处理
性别特征:["男","女"] (这里只有两个特征,所以 N=2):
男 => 10
女 => 01
祖国特征:["中国","美国,"法国"](N=3):
中国 => 100
美国 => 010
法国 => 001
运动特征:["足球","篮球","羽毛球","乒乓球"](N=4):
足球 => 1000
篮球 => 0100
羽毛球 => 0010
乒乓球 => 0001
- 当一个样本为 [“男”,“中国”,“乒乓球”] 的时候,完整的特征数字化的结果为:
[1,0,1,0,0,0,0,0,1]
One-Hot 编码优缺点
优点
- 解决了分类器不好处理离散数据的问题。
- 欧式空间。在回归,分类,聚类等机器学习算法中,特征之间距离计算或相似度计算是非常重要的,而我们常用的距离或相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间。
- One-Hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点。将离散型特征使用One-Hot编码,确实会让特征之间的距离计算更加合理。
- 在一定程度上也起到了扩充特征的作用。
缺点
- 在文本特征表示上有些缺点非常突出。
- 它是一个词袋模型,不考虑词与词之间的顺序(文本中词的顺序信息也是很重要的);
- 它假设词与词相互独立(在大多数情况下,词与词是相互影响的);
- 它得到的特征是离散稀疏的 (这个问题最严重);
常见疑问
- 为什么得到的特征是离散稀疏的
- 不需要使用one-hot编码来处理的情况
- 离散型特征进行one-hot编码的作用,是为了让距离计算更合理,但如果特征是离散的,并且不用one-hot编码就可以很合理的计算出距离,那么就没必要进行one-hot编码。
- 比如,该离散特征共有1000个取值,我们分成两组,分别是400和600,两个小组之间的距离有合适的定义,组内的距离也有合适的定义,那就没必要用one-hot 编码。
离散特征进行one-hot编码后,编码后的特征,其实每一维度的特征都可以看做是连续的特征。就可以跟对连续型特征的归一化方法一样,对每一维特征进行归一化。比如归一化到[-1,1]或归一化到均值为0,方差为1。