【蓝桥杯】 连续奇数和:小明看到一本书上写着:任何数字的立方都可以表示为连续奇数的和。比如:2^3 = 8 = 3 + 5 3^3 = 27 = 7 + 9 + 11 4^3 = 64 = 1...

题目描述

题目传送门 >> 连续奇数和

【问题描述】
小明看到一本书上写着:任何数字的立方都可以表示为连续奇数的和。

比如:

2^3 = 8 = 3 + 5
3^3 = 27 = 7 + 9 + 11
4^3 = 64 = 1 + 3 + ... + 15

虽然他没有想出怎么证明,但他想通过计算机进行验证。

请你帮助小明写出 111111 的立方之连续奇数和表示法的起始数字。如果有多个表示方案,选择起始数字小的方案。

【运行限制】
• 最大运行时间:1s
• 最大运行内存: 128M


答案:371


解题思路

【法一】暴力破解,双层循环,ans = i*(i+2)*…(j-2)*j,当ans=111^3,i为所求。
【法二】“连续奇数的和”实际上是等差数列。若首项为1,则an=2n-1,an求和为 S n = n 2 S_n=n^2 Sn=n2
以“3^3 = 27 = 7 + 9 + 11”为例,它相当于一个大的2n-1,减去一个小的2n-1。即“1+3+5+7+9+11”减去“1+3+5”,这两个等差数列的和,分别是 6 2 6^2 62 3 2 3^2 32
故,找到满足 n 1 2 − n 2 2 = 11 1 3 n1^2-n2^2=111^3 n12n22=1113的n1和n2,则有n1+(n1+2)+…+(n2-2)+n2=11^3。n1为所求。


解题代码

C语言

法一

#include <stdio.h>
int main()
{
  for(int i=1;i<111*111*111;i+=2)
  {
  	// 重置ans
    int ans=0;
    for(int j=i;j<111*111*111;j+=2)
    {
      //ans = i*(i+2)*...(j-2)*j
      ans=ans+j;
      if(ans==111*111*111)
      {
          printf("%d",i);
          return 0;
      }
    }
  }
  return 0;
}

法二

#include <stdio.h>
long long target=111*111*111;
int main()
{
  for(int i=1;i<=2000;i++){
    for(int j=1;j<i;j++){
      if(i*i-j*j==target){
        printf("%d",2*(j+1)-1);
        break;
        }
    }
  }
  return 0;
}
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 尼科彻斯定理是指,任何一个整数立方都可以表示成一串连续奇数的和。这个定理可以通过数学归纳法来证明。首先,当n=1时,1的立方等于1,可以表示成1个奇数1的和。接着,假设对于任意正整数k,k的立方都可以表示成一串连续奇数的和。那么,对于k+1,它的立方可以表示成: (k+1)³ = k³ + 3k² + 3k + 1 根据归纳假设,k³可以表示成一串连续奇数的和,即: k³ = (2m+1) + (2m+3) + ... + (2m+2k-1) 将上式代入(k+1)³中,得到: (k+1)³ = (2m+1) + (2m+3) + ... + (2m+2k-1) + (2k+1) + (2k+3) + (2k+5) 可以看出,上式中的所有奇数都是连续的,因此,k+1的立方也可以表示成一串连续奇数的和。根据数学归纳法,原命题成立。 ### 回答2: 验证尼科彻斯定理需要用到数学归纳法。我们可以先用小数据进行验证,例如: 1^3 = 1,可以表示为 1 2^3 = 8,可以表示为 3 + 5 3^3 = 27,可以表示为 7 + 9 + 11 4^3 = 64,可以表示为 13 + 15 + 17 + 19 5^3 = 125,可以表示为 21 + 23 + 25 + 27 + 29 可以发现,每个整数立方都可以表示为一串连续奇数之和。现在我们来证明这个结论: 当 n = 1 时,1^3 = 1,只需要表示一个数即可。 假设对于任意正整数 k,都可以表示为一串连续奇数之和,即: k^3 = a + (a+2) + (a+4) + ... + (a+2k-2) 那么对于 k+1,其立方为 (k+1)^3,可以表示为: (k+1)^3 = (k^3+3k^2+3k+1) 将 k^3 表示为一串连续奇数之和代入得: (k+1)^3 = a + 2k^2+2k + (a+2k) + (a+2k+2) + ... + (a+4k) 通过化简得: (k+1)^3 = (a+2k^2+2k) + (a+2k+2) + (a+2k+4) + ... + (a+4k) 这也是一串连续奇数之和,证毕。 因此,任意正整数立方都可以表示为一串连续奇数之和。 ### 回答3: 尼科彻斯定理是一个非常有趣的数学定理,它给出了任何一个整数立方都可以成一串连续奇数的和。验证这个定理可以通过数学归纳法来完成,下面我将分享验证过程: 首先,我们可以考虑最简单的情况,就是1的立方等于1,也只需要用1个奇数1来表示。这满足了基本情况。 假设对于任意的正整数k,都满足k的立方可以表示成一串连续奇数的和,那么我们来考虑(k+1)的立方该如何表示。根据(k+1)的立方展开式: (k+1)^3 = k^3 + 3k^2 + 3k + 1 我们可以先用归纳假设将k^3表示成一串连续奇数的和,即: k^3 = (2n-1) + (2n+1) + ... + (2n+2k-3) + (2n+2k-1) 然后我们将(k+1)^3中的k^3用上式代入,可以得到: (k+1)^3 = (2n-1) + (2n+1) + ... + (2n+2k-3) + (2n+2k-1) + 3(2k+1) 可以发现新增加的部分为3个连续奇数,因此(k+1)的立方也可以用一串连续奇数的和表示。 综上所述,尼科彻斯定理得证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值