一个奇数N的立方等于N个连续奇数之和

#include <iostream>
using namespace std;

int main(){
	int n,n1,num,i,key,count;
	cin>>n;
	n1=n*n*n;
	key=0;
	cout<<n<<'*'<<n<<'*' <<n<<'='<<n1<<'=';          //算法的伟大 
	num=n*n-n+1;                                    //多项式求和公式为  和=(首项+末项)*n/2 
	for(i=num;count<n;i+=2){                        //n个连续奇数求和 为   (x+x+(2n-2))*n/2 
		if(key){                                   //即  (x+n-1)*n 
			cout<<'+';                             //假设 n*n*n=(x+n-1)*n	
		}                                          //可得x=n*n-n+1 
		cout<<i;								  //这就是本题的思路 
		key=1;
		count++;
	} 
	return 0;
} 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 这个结论是正确的。具体来说,对于任意一个自然n,它的立方可以表示为n个连续奇数之和,即: n^3 = 1 + 3 + 5 + ... + (2n-1) 这个式子可以通过学归纳法来证明。当n=1时,显然有1^3=1,也就是1个连续奇数之和。假设当n=k时上述式子成立,即k^3 = 1 + 3 + 5 + ... + (2k-1)。那么当n=k+1时,我们可以将k^3展开,得到: k^3 = 1 + 3 + 5 + ... + (2k-1) 将每个数乘以2,再加上2k+1,得到: 2k^3 + 6k^2 + 6k + 1 = (2k+1) + (2k+3) + ... + (2k+2k+1) 也就是: (k+1)^3 = 1 + 3 + 5 + ... + (2k+1) 因此,对于任意一个自然n,它的立方等于n个连续奇数之和。 ### 回答2: 这个结论可以用学归纳法来证明。 首先,当n=1时,1的立方等于1个连续奇数1,结果显然成立。 假设对于任何k∈N,k的立方等于k个连续奇数之和,即1^3+3^3+...+(2k-1)^3=k^3,成立。 现在来证明对于k+1也成立,即(1+3+...+(2k-1)+(2k+1))的立方等于k+1个连续奇数之和。 首先,我们可以把(1+3+...+(2k-1))看作1~(2k-1)中所有奇数之和,即(2k-1)^2=k^2+(2k-1)。因此,(1+3+...+(2k-1)+(2k+1))=k^2+(2k-1)+(2k+1)=k^2+2k,而(k+1)^3=k^3+3k^2+3k+1。 因此,我们可以得到(k+1)^3=(1^3+3^3+...+(2k-1)^3)+(2k+1)^3,即(k+1)^3等于k个连续奇数之和加上一个奇数立方。这就证明了任何一个自然n的立方等于n个连续奇数之和。 ### 回答3: 对于任何一个自然n,它的一半是n/2。从1开始,连续的n个奇数相加,等同于1+3+5+7+...+(n-2)+(n-4)+(n-6)+(n-8)+...+(3)+(1)。 这个序列可以分成两个部分: 1. 前面的一半奇数序列(1到n-1),等同于1+3+5+7+...+(n-2); 2. 后面的一半奇数序列(n-1到1),等同于(n-4)+(n-6)+(n-8)+...+3+1。 两部分相加,每个数恰好出现一次,总和为n*n。 因此,任何一个自然n的立方等于n个连续奇数之和,即n^3=1+3+5+...+(2n-3)+(2n-1)。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值