最优化--牛顿法求解多元函数极值例题(python)

本文通过Python实现牛顿法求解函数f(x)=60-10x1-4x2+x12+x22-x1x2的最小值。代码中定义了函数、梯度和海森矩阵,并展示了迭代过程和结果,绘制了迭代点的轨迹,最终找到函数的局部极小值点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.问题

给定一个函数f(x)=60-10x1-4x2+x12+x22-x1x2,利用牛顿法求解该函数的最小值,需给出中间结果。

二.python代码

import numpy as np
import matplotlib.pyplot as plt

#牛顿法求解f = 60-10*x1-4*x2+x1**2+2*x2**2-x1*x2的极值
#原函数
#建立点的列表并关联起来
X1=np.arange(-50,50,0.1)
X2=np.arange(-50,50,0.1)
[x1,x2]=np.meshgrid(X1,X2)
f = 60-10*x1-4*x2+x1**2+2*x2**2-x1*x2
plt.contour(x1,x2,f,20) # 画出函数的20条轮廓线

#求梯度
def jacobian(x):
    return np.array([-10+2*x[0]-x[1],-4+2*x[1]-x[0]])

#求海森矩阵
def hessian(x):
    return np.array([[2,-1],[-1,2]])

#牛顿法程序
def newton(x0):
    W=np.zeros((2,10**2))
    i = 1
    imax = 100
    W[:,0] = x0 
    x = x0
    delta = 1
    alpha = 1
    
    #迭代条件,当迭代次数不少于100次并且精度大于0.1时进行循环
    while i<imax and delta>0.1:
        #将海森矩阵的逆与梯度相乘
        p = -np.dot(np.linalg.inv(hessian(x)),jacobian(x))
        x0 = x
        x = x + alpha*p
        W[:,i] = x
        delta = sum((x-x0))
        print('第',i,'次迭代结果:')
        print(x,'\n')
        i=i+1
    W=W[:,0:i]  # 记录迭代点
    return W

#初始点
x0 = np.array([-40,40])
W = newton(x0)
    
plt.plot(W[0,:],W[1,:],'g*',W[0,:],W[1,:]) # 画出迭代点收敛的轨迹
plt.show()

三.结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

比奇堡咻飞兜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值