不同的二叉搜索树 ||(dp)

根据整数n,本文介绍了如何生成所有1到n节点的二叉搜索树,并提供了示例输出。这些树的结构在给定的提示中有所展示,问题来源于LeetCode。
摘要由CSDN通过智能技术生成

给定一个整数 n,生成所有由 1 … n 为节点所组成的 二叉搜索树 。

示例:

输入:3
输出:
[
[1,null,3,2],
[3,2,null,1],
[3,1,null,null,2],
[2,1,3],
[1,null,2,null,3]
]
解释:
以上的输出对应以下 5 种不同结构的二叉搜索树:

1 3 3 2 1
\ / / / \
3 2 1 1 3 2
/ / \
2 1 2 3

提示:

0 <= n <= 8

来源:力扣(LeetCode)
链接:点我

思路分析:
先看代码中的思路分析,再看这幅图
在这里插入图片描述

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    /*
    当n=1的时候,只能1
    当n=2的时候,可以放在1的根节点,或者,当前节点的右子树or当前节点的右子树的右子树
    dp[i] = dp[i-1]的所有二叉树,去将当前第n个节点添加到当前二叉搜索树的根节点or当前节点的右子树or当前节点的右子树的右子树

    因为每次添加的节点的值,一定是最大的
    按照二叉搜索树的添加方式
    以root为二叉搜索树的根节点,需要添加newNode节点
    分3种情况:
    (1)newNode为根节点:newNode.left = root
    (2)root.right!=null:newNode.left = root.right  root.right = newNode
    (2)root.right==null:root.right = newNode
    */
    public List<TreeNode> generateTrees(int n) {
        List<TreeNode> res = new ArrayList<>();
        if(n<=0){
            return res;
        }
        //n>0,初始状态,dp[1]=1
        TreeNode root = new TreeNode(1);
        res.add(root);
        for(int i=2;i<=n;i++){  //分治的思想解决问题
            List<TreeNode> temp = new ArrayList<>();
            for(TreeNode cur:res){  //遍历当前集合中的二叉搜索树,变化其结构
                //处理将当前值为i的节点放在根节点
                TreeNode addNode = new TreeNode(i); //这是需要当前添加到cur结构中的节点     
                //第一种情况:newNode为根节点
                addNode.left = cur;
                temp.add(copyTree(addNode));
                addNode.left = null;

                //第二种情况:cur.right!=null
                TreeNode t = cur;   //去遍历当前二叉搜索树
                //将当前值为i的节点放在t的右边,并将t的right放在当前值为i的节点的左边,处理完毕,要恢复原始cur的结构
                while(t.right!=null){
                    addNode.left = t.right;
                    t.right = addNode;
                    temp.add(copyTree(cur));    //copy当前结构的二叉树到temp中转集合里面
                    //恢复cur和addNode的原始样子
                    t.right = addNode.left;
                    addNode.left = null;
                    //t往右移动
                    t = t.right;
                }

                //第三种情况:cur.right==null
                //当t.right的右子树为null,那么是最后一种情况,把addNode放到t.right位置
                t.right = addNode;
                temp.add(copyTree(cur));
            }
            res = temp;
        }
        return res;
    }

    //深拷贝一个root为根节点的二叉树,最后返回深拷贝的二叉树的根节点
    public TreeNode copyTree(TreeNode root){
        if(root==null){
            return null;
        }
        TreeNode node = new TreeNode(root.val);
        node.left = copyTree(root.left);
        node.right = copyTree(root.right);
        return node;
    }
    
}```

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值