给定一个整数 n,生成所有由 1 … n 为节点所组成的 二叉搜索树 。
示例:
输入:3
输出:
[
[1,null,3,2],
[3,2,null,1],
[3,1,null,null,2],
[2,1,3],
[1,null,2,null,3]
]
解释:
以上的输出对应以下 5 种不同结构的二叉搜索树:
1 3 3 2 1
\ / / / \
3 2 1 1 3 2
/ / \
2 1 2 3
提示:
0 <= n <= 8
来源:力扣(LeetCode)
链接:点我
思路分析:
先看代码中的思路分析,再看这幅图
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
/*
当n=1的时候,只能1
当n=2的时候,可以放在1的根节点,或者,当前节点的右子树or当前节点的右子树的右子树
dp[i] = dp[i-1]的所有二叉树,去将当前第n个节点添加到当前二叉搜索树的根节点or当前节点的右子树or当前节点的右子树的右子树
因为每次添加的节点的值,一定是最大的
按照二叉搜索树的添加方式
以root为二叉搜索树的根节点,需要添加newNode节点
分3种情况:
(1)newNode为根节点:newNode.left = root
(2)root.right!=null:newNode.left = root.right root.right = newNode
(2)root.right==null:root.right = newNode
*/
public List<TreeNode> generateTrees(int n) {
List<TreeNode> res = new ArrayList<>();
if(n<=0){
return res;
}
//n>0,初始状态,dp[1]=1
TreeNode root = new TreeNode(1);
res.add(root);
for(int i=2;i<=n;i++){ //分治的思想解决问题
List<TreeNode> temp = new ArrayList<>();
for(TreeNode cur:res){ //遍历当前集合中的二叉搜索树,变化其结构
//处理将当前值为i的节点放在根节点
TreeNode addNode = new TreeNode(i); //这是需要当前添加到cur结构中的节点
//第一种情况:newNode为根节点
addNode.left = cur;
temp.add(copyTree(addNode));
addNode.left = null;
//第二种情况:cur.right!=null
TreeNode t = cur; //去遍历当前二叉搜索树
//将当前值为i的节点放在t的右边,并将t的right放在当前值为i的节点的左边,处理完毕,要恢复原始cur的结构
while(t.right!=null){
addNode.left = t.right;
t.right = addNode;
temp.add(copyTree(cur)); //copy当前结构的二叉树到temp中转集合里面
//恢复cur和addNode的原始样子
t.right = addNode.left;
addNode.left = null;
//t往右移动
t = t.right;
}
//第三种情况:cur.right==null
//当t.right的右子树为null,那么是最后一种情况,把addNode放到t.right位置
t.right = addNode;
temp.add(copyTree(cur));
}
res = temp;
}
return res;
}
//深拷贝一个root为根节点的二叉树,最后返回深拷贝的二叉树的根节点
public TreeNode copyTree(TreeNode root){
if(root==null){
return null;
}
TreeNode node = new TreeNode(root.val);
node.left = copyTree(root.left);
node.right = copyTree(root.right);
return node;
}
}```