【统计学】深入理解最大似然估计(MLE, maximum likelihood estimation)

目录

1. 前言

2. 案例导入

3. 理论阐述

4. 伯努利分布

5. 高斯(正态)分布


1. 前言

最大似然估计就是利用已知的样本结果,在使用某个模型的基础上,反推最有可能导致这样的结果的模型参数。

2. 案例导入

这里我们用一个经典的摸球游戏来阐述最大似然估计在伯努利分布模型上的应用。

假设一个袋子里面装有红球和白球,比例未知,现在我们要抽取10次(每次抽完都放回,保证每次抽取的独立性),假设抽取到了7次白球和3次红球(最大似然估计是“一种模型已经确定,参数未知”基于样本的的参数估计方法)。显而易见,此时样本的白球比例为70%,但如何通过理论的方法推知该袋中最大可能性的白球红球比例呢?一些简单的情况,很容易做出一个推断,如上面的摸球模型,就可以直接根据样本情况估计最有可能袋子里就是7个白球3个红球。但是,在一些复杂的情况下,是很难通过直观的方式获得答案的,这时候理论分析就变得格外重要,这也是最值似然估计要解决的问题。我们可以定义从袋子中连续两次摸球的概率为:

                                    

因为θ是未知的,所以我们定义似然L为:

                              

两边取ln,取ln是为了将右边的乘号变成加号,以方便求导。

两边同时取对数,左边通常称为对数似然。

有时,也有上式为平均对数似然。

最大似然估计的过程,就是找到一个合适的theta,使得平均对数似然最大。因此,可以得到以下公式:

这里讨论的是2次采样的情况,当然也可以将其拓展到多次采样的情况:

我们定义M为模型,表示抽到白球的概率为θ,而抽到红球的概率为1-θ,因此10次抽取到白球7次的概率可以表示为:

将其描述为平均似然可得:

那么最大似然就是找到一个合适的θ,获得最大的平均似然。因此我们对平均似然的公式对θ进行求导,并令导数为0.

由此我们可以得到结论,当抽取白球的概率为0.7时,最可能产生10次抽取到白球7次的事件。

 

3. 理论阐述

假设我们有一个独立同分布的样本X = \{x^{t}\}^{_{t=1}^{N}}。假设x^{t}是从某个定义在参数θ上的已知概率密度族p(x|θ)中抽取的实例:

                                                                          x^{t} ~ p(x|θ)

我们希望找出这样的θ,使得x^{t}尽可能像是从p(x|θ)抽取的【 l(θ|X) 最大】。因为x^{t}独立的,所以给定参数θ,样本X的似然(likelihood)就是单个点似然的乘积:

                                                                 l(θ|X) ☰ p(X|θ)  =  \prod_{t=1}^{N}p(x^t | \Theta \)

【这里插一句,如何理解 样本的似然 定义为 基于假设模型下样本的概率 也非常重要】

在最大似然估计中,我们感兴趣的是找到这样的θ,使得X最像是抽取的。因此,我们寻找最大化样本似然的θ,该似然记作 l(θ|X)。我们可以最大化该似然的对数,而不改变取最大值的θ值。log(·)把乘积转换为求和,并且当假定某种密度(例如,包含指数)是进一步简化计算量。对数似然(log likelihood)定义为:

                                                               L(θ|X)  ☰   log l(θ|X)  =   \sum_{t=1}^{N} log p(x^t | \Theta \)

现在,让我们来看看我们感兴趣的实际应用中出现的一些分布。如果我们有两类问题,我们就使用伯努利分布。高斯(正态)密度最常用来对具有数值输入的类条件密度建模的密度之一。对这两种分布,我们来讨论它们参数的最大似然估计(MLE)方法。

4. 伯努利分布

在伯努利分布中,有两个结果:事情要么发生,要么不发生。例如,实例是类的正例,或者不是。事件发生,伯努利随机变量X以概率p取值为1,事件不发生的概率为1-p,并用X取值为0表示。随机变量的取值概率表示为:

                                                 

期望和方差可以用下式计算:

                                          

p是唯一的参数,并且给定独立同分布样本X = \{x^{t}\}^{_{t=1}^{N}},其中x^{t}∈{0, 1},希望计算p的估计\widehat{p}。其对数似然为:

                  

通过求解dL/dp=0,可以找出最大化该对数似然的\widehat{p}。p上带帽表示它是p的一个估计。

                                                                  

p的估计是事件发生的次数与实验次数的比值。记住,如果X是参数为p的伯努利变量,则E[X]=p,并且作为期望,均值的最大似然估计是样本的平均值。

注意,该估计是样本的函数,并且也是一个随机变量。给定从相同的p(x)中抽取的不同X_{i},我们可以谈论\widehat{p}_{i}的分布。例如,期望\widehat{p}_{i}的分布的方差随N增加而减少;随着样本增大,从而它们的平均值变得更加相似。

5. 高斯(正态)分布

X是均值为E[X] ☰  μ,方差为Var(X) ☰ \sigma ^{2}的高斯(正态)分布,记作N(μ, \sigma ^{2}),如果它的密度函数为:

                            

给定样本X = \{x^{t}\}^{_{t=1}^{N}},其中x^{t} ~ N(μ, \sigma ^{2}),高斯样本的对数似然为:

                   

通过求该对数似然的偏导数并令它们等于0,可以求出最大似然估计为:

                                          

我们根据通常的约定,用希腊字母表示总体参数,用罗马字母表示它们的样本估计。有时,帽子(抑扬符号)表示估计。

  • 3
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 最大似然估计Maximum Likelihood Estimation)是一种统计学方法,用于估计一个未知参数的值,使得该参数下的样本观测值出现的概率最大。在概率论统计学中,最大似然估计是一种常用的参数估计方法,被广泛应用于各种领域,如生物学、物理学、经济学等。 ### 回答2: 最大似然估计Maximum Likelihood Estimation,简称MLE)是一种常用的参数估计方法。它的核心思想是选择使得给定数据发生概率最大的参数值作为估计值。 在最大似然估计中,我们假设数据是从一个已知的概率分布中独立地抽取得到的。而我们的目标是找到使得观测数据的概率最大的参数值。具体地说,我们要找到一个参数的值,使得该参数设定下观测到的数据出现的概率最大。 最大似然估计的步骤通常包括以下几个步骤。首先,要明确选取的概率分布的形式,并给出这个概率分布的参数。然后,确定似然函数,即给定数据下参数的似然概率函数。接着,通过最大化似然函数,即找到使得似然函数最大的参数值。最后,得到的参数值就是最大似然估计值。 最大似然估计具有一些良好的性质。它是渐进无偏的,即当样本量趋向于无穷大时,最大似然估计的偏差趋于零。此外,最大似然估计还具有较高的效率,意味着它通常能够提供较小的方差。 最大似然估计广泛应用于各个领域,包括统计学机器学习、经济学等。例如,在回归分析中,可以使用最大似然估计来估计回归模型的系数。在概率模型中,最大似然估计也经常用于参数估计。 总之,最大似然估计是一种常用的参数估计方法,通过最大化给定数据的可能性来得到参数估计值,具有一些良好的性质。它在统计学和其他领域都有广泛的应用。 ### 回答3: 最大似然估计是一种统计推断方法,用于估计概率分布的参数。它基于最大化样本观测到的数据出现的可能性,即最大化似然函数。 最大似然估计的基本思想是找到使得观测到的数据出现概率最大的参数。假设我们有一个概率模型和一些观测到的数据,我们可以通过调整模型参数的值来使得观测到的数据的概率最大化。这种方法可以用于确定连续或离散分布的参数,如正态分布的均值和方差。 最大似然估计的步骤如下:首先,我们需要选择一个合适的概率分布模型来描述数据的分布情况;然后,使用观测到的数据来构建似然函数,该函数描述了给定数据时参数的可能性;最后,通过最大化似然函数来估计概率分布的参数,找到使得观测数据出现的可能性最大的参数值。 最大似然估计具有很多优点,例如,它是一种无偏估计方法,意味着在大样本情况下,估计值将接近真实值。此外,最大似然估计还具有良好的渐近性质,可以在一定假设条件下提供一致的估计结果。 然而,最大似然估计也有一些限制。首先,它依赖于所选择的概率分布模型的正确性,如果选取的模型与实际数据不匹配,估计结果可能是不准确的。其次,当样本量较小时,估计结果可能不稳定,容易受到极端值的影响。 总的来说,最大似然估计是一种常用的估计方法,用于确定概率分布的参数。它具有很多优点,但也需要谨慎选择合适的概率模型,并注意样本量和极端值对估计结果的影响。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值