中国剩余定理 理论介绍及代码实现

本文介绍了中国剩余定理的概念及其历史背景,通过一个实例详细解释了数学形式的中国剩余定理,并提供了代码实现求解过程。通过线性同余方程组,我们可以找到满足多个模条件的最小正整数解。

由来

中国剩余定理,别称 孙子定理中国余数定理,相传来自于中国古代数学研究著作《孙子算经》。

有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?

形式化上述问题,即求出最小正整数 m m m 同时满足

m ≡ 2 ( m o d 3 ) m ≡ 3 ( m o d 5 ) m ≡ 2 ( m o d 7 ) m \equiv 2 \pmod 3 \\ m \equiv 3 \pmod 5 \\ m \equiv 2 \pmod 7 \\ m2(mod3)m3(mod5)m2(mod7)

利用 枚举法,我们分别枚举满足单个条件的正整数共 3 3 3 组,可以发现 23 23 23 是同时满足所有条件的最小正整数。

3 n + 2 = ( 2 , 5 , 8 , 11 , 14 , 17 , 20 , 23 , 26 , 29 , 32 …   ) 5 n + 3 = ( 3 , 8 , 13 , 18 , 23 , 28 …   ) 7 n + 2 = ( 2 , 9 , 16 , 23 , 30 …   ) \begin{aligned} 3n + 2 &= (2, 5, 8, 11, 14, 17, 20, \textbf{23}, 26, 29, 32 \dots) \\ 5n + 3 &= (3, 8, 13, 18, \textbf{23}, 28 \dots) \\ 7n + 2 &= (2, 9, 16, \textbf{23}, 30 \dots) \\ \end{aligned} 3n+25n+37n+2=(2,5,8,11,14,17,20,23,26,29,32)=(3,8,13,18,23,28)=(2,9,16,23,30)

而中国宋朝数学家 秦九韶 在《数学九章》中提出了更为系统的解答,中国明朝数学家 程大位 则将其编成《孙子歌诀》:

三人同行七十希,五树梅花廿一支,七子团圆正半月,除百零五便得知

意思是将除以 3 的余数乘以 70,将除以 5 的余数乘以 21,将除以 7 的余数乘以 15,然后再减去一个 105 的倍数,得到:

70 × 2 + 21 × 3 + 15 × 2 = 233 = 105 × 2 + 23 70 \times 2 + 21 \times 3 + 15 \times 2 = 233 = 105 \times 2 + 23 70×2+21×3+15×2=233=105×2+23

所以求出的结果也是 23。是不是很神奇?

数学形式的中国剩余定理

中国剩余定理有很多种数学形式的定义,我们采用 张跃辉在《数学的天空》一书中给出的形式化定义。

m 1 , m 2 , ⋯   , m s m_1, m_2, \cdots, m_s m1,m

#include #include using namespace std; typedef int LL; typedef pair PLL; LL inv(LL t, LL p) {//求t关于p的逆元 if (t >= p) t = t%p; return t == 1 ? 1 : (p - p / t) * inv(p % t, p) % p; } LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } PLL linear(LL A[], LL B[], LL M[], int n) {//求解A[i]x = B[i] (mod M[i]),总共n个线性方程组 LL x = 0, m = 1; for (int i = 0; i < n; i++) { LL a = A[i] * m, b = B[i] - A[i] * x, d =gcd(M[i], a); if (b % d != 0) return PLL(0, -1);//答案不存在,返回-1 LL t = b / d * inv(a / d, M[i] / d) % (M[i] / d); x = x + m*t; m *= M[i] / d; } x = (x % m + m) % m; return PLL(x, m);//返回的x就是答案,m是最后的lcm值 } int main() { int n; scanf_s("%d", &n); LL a[2017], b[2017], m[2017]; for (int i = 0; i<n; i++) { scanf_s("%d%d%d", &a[i], &b[i], &m[i]); } PLL pa = linear(a, b, m, n); printf("%lld\n", pa.first); } 设计思路: 有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?” 解这题,先构造一个答案 5*7*inv(5*7, 3) % 3 = 1 3*7*inv(3*7, 5) % 5 = 1 3*5*inv(3*5, 7) % 7 = 1 然后两边同乘你需要的数 2 * 5*7*inv(5*7, 3) % 3 = 2 3 * 3*7*inv(3*7, 5) % 5 = 3 2 * 3*5*inv(3*5, 7) % 7 = 2 令 a = 2 * 5*7*inv(5*7, 3) b = 3 * 3*7*inv(3*7, 5) c = 2 * 3*5*inv(3*5, 7) 那么 a % 3 = 2 b % 5 = 3 c % 7 = 2 其实答案就是a+b+c 因为 a%5 = a%7 = 0 因为a是5的倍数,也是7的倍数 b%3 = b%7 = 0 因为b是3的倍数,也是7的倍数 c%3 = c%5 = 0 因为c是3的倍数,也是5的倍数 所以 (a + b + c) % 3 = (a % 3) + (b % 3) + (c % 3) = 2 + 0 + 0 = 2 (a + b + c) % 5 = (a % 5) + (b % 5) + (c % 5) = 0 + 3 + 0 = 3 (a + b + c) % 7 = (a % 7) + (b % 7) + (c % 7) = 0 + 0 + 2 = 2 答案a+b+c完全满足题意 但是答案,不只一个,有无穷个,每相隔105就是一个答案(105 = 3 * 5 * 7) a=2*5*7*2=140 b=3*3*7*1=63 c=2*3*5*1=30 140+63+30=233 2335 = 23 如果题目问你最小的那个答案,那就是23了。 当 1*x=2(%3) 1*x=3(%5) 1*x=2(%7) 输入: 3 1 2 3 1 3 5 1 2 7 输出: 23
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值