原文地址:【概率论与数理统计(研究生课程)】知识点总结4(随机变量的数字特征)
目录
数学期望
E ( X ) = ∫ − ∞ + ∞ x d F ( x ) E(X)=\int_{-\infty}^{+\infty}xdF(x) E(X)=∫−∞+∞xdF(x)
离散型
∑ k = 1 ∞ x k p k \sum_{k=1}^{\infty}x_kp_k ∑k=1∞xkpk 绝对收敛
∑ k = 1 ∞ x k p k = E ( X ) \sum\limits_{k=1}^{\infty}x_kp_k=E(X) k=1∑∞xkpk=E(X)
连续型
∫
−
∞
+
∞
x
p
(
x
)
d
x
\int_{-\infty}^{+\infty}xp(x)dx
∫−∞+∞xp(x)dx 绝对收敛
∫
−
∞
+
∞
x
p
(
x
)
d
x
=
E
(
X
)
\int_{-\infty}^{+\infty}xp(x)dx=E(X)
∫−∞+∞xp(x)dx=E(X)
性质:
- E ( C ) = C , C E(C)=C, C E(C)=C,C是常数
- E ( k X ) = k E ( X ) , k E(kX)=kE(X),k E(kX)=kE(X),k是常数
- E ( X 1 + X 2 ) = E ( X 1 ) + E ( X 2 ) , E ( ∑ i = 1 n X i ) = ∑ i = 1 n E ( X i ) E(X_1+X_2)=E(X_1)+E(X_2), \quad E(\sum\limits_{i=1}^{n} X_i)=\sum\limits_{i=1}^{n}E(X_i) E(X1+X2)=E(X1)+E(X2),E(i=1∑nXi)=i=1∑nE(Xi)
- 若 X 、 Y X、Y X、Y独立 ⟹ E ( X Y ) = E ( X ) E ( Y ) \Longrightarrow E(XY)=E(X)E(Y) ⟹E(XY)=E(X)E(Y)
随机变量函数的期望
一维( Y = g ( X ) Y=g(X) Y=g(X))
E ( X ) = ∫ − ∞ + ∞ g ( x ) d F ( x ) E(X)=\int_{-\infty}^{+\infty}g(x)dF(x) E(X)=∫−∞+∞g(x)dF(x)
- 离散型
E ( Y ) = E [ g ( X ) ] = ∑ k = 1 ∞ g ( x k ) p k E(Y)=E[g(X)]=\sum\limits_{k=1}^{\infty}g(x_k)p_k E(Y)=E[g(X)]=k=1∑∞g(xk)pk
- 连续型
E ( Y ) = E [ g ( X ) ] = ∫ − ∞ + ∞ g ( x ) p ( x ) d x E(Y)=E[g(X)]=\int_{-\infty}^{+\infty}g(x)p(x)dx E(Y)=E[g(X)]=∫−∞+∞g(x)p(x)dx
X ∼ N ( 0 , σ 2 ) , X \sim N(0, \sigma^2), X∼N(0,σ2), 求 E ( X n ) E(X^n) E(Xn).
n n n为奇数: E ( X n ) = σ n ( n − 1 ) ! ! , n E(X^n)=\sigma^n(n-1)!!,n E(Xn)=σn(n−1)!!,n为偶数: E ( X n ) = 0 E(X^n)=0 E(Xn)=0
二维( Z = g ( X , Y ) Z=g(X,Y) Z=g(X,Y))
E ( Z ) = E [ g ( X , Y ) ] = ∫ − ∞ + ∞ ∫ − ∞ + ∞ g ( x , y ) d F ( x , y ) E(Z)=E[g(X,Y)]=\int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}g(x,y)dF(x,y) E(Z)=E[g(X,Y)]=−∞∫+∞−∞∫+∞g(x,y)dF(x,y)
- 离散型
E ( Z ) = ∑ i , j = 1 ∞ g ( x i , y j ) p i j E(Z)=\sum_{i,j=1}^{\infty}g(x_i,y_j)p_{ij} E(Z)=i,j=1∑∞g(xi,yj)pij
- 连续型
E ( Z ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ g ( x , y ) p ( x , y ) d x d y E(Z)=\int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}g(x,y)p(x,y)dxdy E(Z)=−∞∫+∞−∞∫+∞g(x,y)p(x,y)dxdy
方差
D ( X ) = E { [ X − E ( X ) ] 2 } = E ( X 2 ) − E 2 ( X ) D(X)=E\{[X-E(X)]^2\}=E(X^2)-E^2(X) D(X)=E{[X−E(X)]2}=E(X2)−E2(X)
进一步推导得
E
(
X
2
)
E(X^2)
E(X2)的求法:
E
(
X
2
)
=
D
(
X
)
+
E
2
(
X
)
E(X^2)=D(X)+E^2(X)
E(X2)=D(X)+E2(X)
*性质:
D ( C ) = 0 , C D(C)=0, C D(C)=0,C为常数
D ( C X ) = C 2 D ( X ) D(CX)=C^2D(X) D(CX)=C2D(X)
D ( a X ± b Y ) = a 2 D ( X ) + b 2 D ( Y ) ± 2 a b C o v ( X , Y ) = a 2 D ( X ) + b 2 D ( Y ) ± 2 a b ρ X Y D ( X ) D ( Y ) \begin{aligned}D(aX \pm bY)&=a^2D(X)+b^2D(Y) \pm 2abCov(X,Y) \\ &=a^2D(X)+b^2D(Y) \pm 2ab\rho_{XY}\sqrt{D(X)}\sqrt{D(Y)}\end{aligned} D(aX±bY)=a2D(X)+b2D(Y)±2abCov(X,Y)=a2D(X)+b2D(Y)±2abρXYD(X)D(Y)
若 X 、 Y X、Y X、Y相互独立,则 D ( a X ± b Y ) = a 2 D ( X ) + b 2 D ( Y ) D(aX\pm bY)=a^2D(X)+b^2D(Y) D(aX±bY)=a2D(X)+b2D(Y)
D ( a X + b ) = a 2 D ( X ) , D ( ∑ i = 1 n C i X i + b ) = ∑ i = 1 n C i 2 D ( X i ) D(aX+b)=a^2D(X), \quad D(\sum\limits_{i=1}^{n} C_iX_i +b)=\sum\limits_{i=1}^{n}C_i^2D(X_i) D(aX+b)=a2D(X),D(i=1∑nCiXi+b)=i=1∑nCi2D(Xi)
D ( X ) = 0 ⟺ P { X = c } = 1 , c = E ( X ) D(X)=0 \Longleftrightarrow P\{X=c\}=1,c=E(X) D(X)=0⟺P{X=c}=1,c=E(X)
常见分布的数学期望和方差
:::hljs-center
分布名称 | 数学期望 E ( X ) E(X) E(X) | 方差 D ( X ) D(X) D(X) |
---|---|---|
0-1分布 | p p p | p ( 1 − p ) p(1-p) p(1−p) |
二项分布 | n p np np | n p ( 1 − p ) np(1-p) np(1−p) |
泊松分布 | λ \lambda λ | λ \lambda λ |
几何分布 | 1 p \frac{1}{p} p1 | 1 − p p 2 \frac{1-p}{p^2} p21−p |
均匀分布 | a + b 2 \frac{a+b}{2} 2a+b | ( b − a ) 2 12 \frac{(b-a)^2}{12} 12(b−a)2 |
指数分布 | 1 λ \frac{1}{\lambda} λ1 | 1 λ 2 \frac{1}{\lambda^2} λ21 |
正态分布 | μ \mu μ | σ 2 \sigma^2 σ2 |
卡方分布 | n n n | 2 n 2n 2n |
::: |
协方差
C o v ( X , Y ) = E { [ X − E ( X ) ] [ Y − E ( Y ) ] } = E ( X Y ) − E ( X ) E ( Y ) = ρ X Y D ( X ) D ( Y ) \begin{aligned} Cov(X,Y) &=E\{[X-E(X)][Y-E(Y)]\} \\ &=E(XY)-E(X)E(Y) \\ &=\rho_{XY}\sqrt{D(X)}\sqrt{D(Y)} \end{aligned} Cov(X,Y)=E{[X−E(X)][Y−E(Y)]}=E(XY)−E(X)E(Y)=ρXYD(X)D(Y)
性质:
- C o v ( X , Y ) = C o v ( Y , X ) Cov(X,Y)=Cov(Y,X) Cov(X,Y)=Cov(Y,X)
- C o v ( X , X ) = D ( X ) Cov(X,X)=D(X) Cov(X,X)=D(X)
- C o v ( a X , b Y ) = a b C o v ( X , Y ) Cov(aX,bY)=abCov(X,Y) Cov(aX,bY)=abCov(X,Y)
- C o v ( X + Y , Z ) = C o v ( X , Z ) + C o v ( Y , Z ) Cov(X+Y, Z)=Cov(X,Z)+Cov(Y,Z) Cov(X+Y,Z)=Cov(X,Z)+Cov(Y,Z)
随机向量的期望和方差
设
X
=
(
X
1
,
X
2
,
⋯
,
X
n
)
⊤
,
E
(
X
)
=
(
E
X
1
,
E
X
2
,
⋯
,
E
X
n
)
⊤
=
a
,
D
X
=
B
,
X=(X_1,X_2,\cdots,X_n)^{\top},E(X)=(EX_1,EX_2,\cdots,EX_n)^{\top}=a,DX=B,
X=(X1,X2,⋯,Xn)⊤,E(X)=(EX1,EX2,⋯,EXn)⊤=a,DX=B, 对于
Y
=
∑
i
=
1
n
l
i
X
i
=
l
⊤
X
:
Y=\sum\limits_{i=1}^{n}l_iX_i=l^\top X:
Y=i=1∑nliXi=l⊤X:
E
Y
=
l
⊤
a
,
D
Y
=
l
⊤
B
l
EY=l^\top a, DY=l^\top Bl
EY=l⊤a,DY=l⊤Bl
设
C
(
m
×
n
)
=
(
C
i
j
)
,
C_{(m\times n)}=(C_{ij}),
C(m×n)=(Cij),对
Y
=
C
X
:
Y=CX:
Y=CX:
E
Y
=
C
a
,
D
Y
=
C
B
C
⊤
EY=Ca,DY=CBC^\top
EY=Ca,DY=CBC⊤
特征函数
f ( t ) = E ( e i t X ) = ∫ − ∞ + ∞ e i t x d F ( x ) f(t)=E(e^{itX})=\int_{-\infty}^{+\infty}e^{itx}dF(x) f(t)=E(eitX)=∫−∞+∞eitxdF(x)
-
离散型
f ( t ) = ∑ i = 1 n e i t X i p i f(t)=\sum\limits_{i=1}^{n}e^{itX_i}p_i f(t)=i=1∑neitXipi -
连续型
f ( t ) = ∫ − ∞ + ∞ e i t x p ( x ) d x f(t)=\int_{-\infty}^{+\infty}e^{itx}p(x)dx f(t)=∫−∞+∞eitxp(x)dx
性质:
- f ( 0 ) = 1 f(0)=1 f(0)=1
- f ( − t ) = f ( t ) ˉ f(-t)=\bar{f(t)} f(−t)=f(t)ˉ
- 若 a 、 b a、b a、b是常数, Y = a X + b Y=aX+b Y=aX+b,则 f Y ( t ) = E ( e i t ( a X + b ) ) = E e i t b E e i t a X = e i t b f X ( a t ) f_Y(t)=E(e^{it(aX+b)})=Ee^{itb}Ee^{itaX}=e^{itb}f_X(at) fY(t)=E(eit(aX+b))=EeitbEeitaX=eitbfX(at)
- 若 X 、 Y X、Y X、Y相互独立,则 f X + Y ( t ) = f X ( t ) f Y ( t ) f_{X+Y}(t)=f_X(t)f_Y(t) fX+Y(t)=fX(t)fY(t)
- E X k = ( − i ) k f X ( k ) ( 0 ) EX^k=(-i)^kf_X^{(k)}(0) EXk=(−i)kfX(k)(0)
常见分布的特征函数及其推导过程
切比雪夫不等式
P { ∣ X − E X ∣ ≥ ϵ } ≤ D X ϵ 2 P\{|X-EX|\ge \epsilon\}\le \frac{DX}{\epsilon^2} P{∣X−EX∣≥ϵ}≤ϵ2DX
柯西-施瓦兹不等式
∣ E ( X Y ) ∣ 2 ≤ E X 2 E Y 2 C o v 2 ( X , Y ) ≤ D X D Y \begin{aligned} |E(XY)|^2 \le EX^2EY^2 \\ Cov^2(X,Y) \le DXDY \end{aligned} ∣E(XY)∣2≤EX2EY2Cov2(X,Y)≤DXDY