【概率论与数理统计(研究生课程)】知识点总结11(多元统计分析基本概念)

原文地址:【概率论与数理统计(研究生课程)】知识点总结11(多元统计分析基本概念)

随机向量

X 1 , X 2 , ⋯   , X p X_1,X_2,\cdots,X_p X1,X2,,Xp p p p个随机变量,由它们组成的向量:
X = X ( X 1 , X 2 , ⋯   , X p ) ⊤ X=X(X_1,X_2,\cdots,X_p)^\top X=X(X1,X2,,Xp)
称为随机向量。

随机向量的分布函数和密度函数

X = ( X 1 , X 2 , ⋯   , X p ) ⊤ X=(X_1,X_2,\cdots,X_p)^\top X=(X1,X2,,Xp)是一随机变量,它的多元分布函数是:
F ( x ) = F ( x 1 , x 2 , ⋯   , x p ) = P ( X 1 ≤ x 1 , X 2 ≤ x 2 , ⋯   , X p ≤ x p ) F(x)=F(x_1,x_2,\cdots,x_p)=P(X_1\le x_1,X_2\le x_2, \cdots, X_p\le x_p) F(x)=F(x1,x2,,xp)=P(X1x1,X2x2,,Xpxp)
式中: x = ( x 1 , x 2 , ⋯   , x p ) ∈ R p x=(x_1,x_2,\cdots,x_p)\in R^p x=(x1,x2,,xp)Rp,并记成 X ∼ F ( x ) X\sim F(x) XF(x)

X ∼ F ( x ) = F ( x 1 , x 2 , ⋯   , x p ) X\sim F(x)=F(x_1,x_2,\cdots,x_p) XF(x)=F(x1,x2,,xp),若存在一个非负函数 f ( ⋅ ) f(\cdot) f(),使得:
F ( x ) = ∫ − ∞ x 1 ⋯ ∫ − ∞ x p f ( t 1 , t 2 , ⋯   , t p ) d t 1 ⋯ d t p F(x)=\int\limits_{-\infty}^{x_1}\cdots\int\limits_{-\infty}^{x_p}f(t_1,t_2,\cdots ,t_p)dt_1\cdots dt_p F(x)=x1xpf(t1,t2,,tp)dt1dtp
对一切 x ∈ R p x\in R^p xRp成立,则称 X X X F ( x ) F(x) F(x)有分布密度 f ( ⋅ ) f(\cdot) f(),并称 X X X为连续型随机向量。

f ( ⋅ ) f(\cdot) f()仍然要满足非负归一性

随机向量的独立性

两个随机向量 X X X Y Y Y称为相互独立的,若
P ( X ≤ x , Y ≤ y ) = P ( X ≤ x ) P ( y ≤ y ) P(X\le x,Y\le y)=P(X\le x)P(y\le y) P(Xx,Yy)=P(Xx)P(yy)
对一切 x , y x,y x,y成立。

  1. F ( x , y ) F(x,y) F(x,y) ( X , Y ) (X,Y) (X,Y)的联合分布函数, G ( x ) G(x) G(x) H ( y ) H(y) H(y)分别为 X X X Y Y Y的分布函数,则 X X X Y Y Y相互独立当且仅当 F ( x , y ) = G ( x ) H ( y ) F(x,y)=G(x)H(y) F(x,y)=G(x)H(y)
  2. ( X , Y ) (X,Y) (X,Y)有分布密度函数 f ( x , y ) f(x,y) f(x,y),用 g ( x ) g(x) g(x) h ( y ) h(y) h(y)分别表示 X X X Y Y Y的密度函数,则 X X X Y Y Y相互独立当且仅当 f ( x , y ) = g ( x ) h ( y ) f(x,y)=g(x)h(y) f(x,y)=g(x)h(y)
  • 在上述定义中, X X X Y Y Y的维数一般是不同的。
  • 可推广到多元。

随机向量的均值

X = ( X 1 , X 2 , ⋯   , X p ) ⊤ X=(X_1, X_2,\cdots,X_p)^\top X=(X1,X2,,Xp) p p p个分量,若 E ( X i ) = μ i ( i = 1 , 2 , ⋯   , p ) E(X_i)=\mu_i(i=1,2,\cdots,p) E(Xi)=μi(i=1,2,,p)存在,定义随机向量 X X X的均值为:
E ( X ) = [ E ( X 1 ) E ( X 2 ) ⋮ E ( X p ) ] = [ μ 1 μ 2 ⋮ μ p ] = μ E(X)= \begin{bmatrix} E(X_1) \\ E(X_2) \\ \vdots \\ E(X_p) \end{bmatrix} =\begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_p \end{bmatrix} = \boldsymbol{\mu} E(X)=E(X1)E(X2)E(Xp)=μ1μ2μp=μ
式中, μ \boldsymbol{\mu} μ为一个 p p p维向量,称为均值变量。

A A A B B B为常数矩阵时,由定义可以立即推出如下性质:

  1. E ( A X ) = A E ( X ) E(AX)=AE(X) E(AX)=AE(X)
  2. E ( A X B ) = A E ( X ) B E(AXB)=AE(X)B E(AXB)=AE(X)B

随机向量的协方差矩阵

D ( X ) = C o v ( X , X ) = E { [ X − E ( X ) ] [ X − E ( X ) ] ⊤ ) = [ C o v ( X 1 , X 1 ) C o v ( X 1 , X 2 ) ⋯ C o v ( X 1 , X p ) C o v ( X 2 , X 1 ) C o v ( X 2 , X 2 ) ⋯ C o v ( X 2 , X p ) ⋮ ⋮ ⋯ ⋮ C o v ( X p , X 1 ) C o v ( X p , X 2 ) ⋯ C o v ( X p , X p ) ] = ( σ i j ) p × p = d e f Σ \begin{aligned} D(X)&=Cov(X,X)=E\{[X-E(X)][X-E(X)]^\top) \\ &= \begin{bmatrix} Cov(X_1,X_1) & Cov(X_1,X_2) &\cdots & Cov(X_1,X_p) \\ Cov(X_2,X_1) & Cov(X_2,X_2) &\cdots & Cov(X_2,X_p) \\ \vdots & \vdots & \cdots & \vdots \\ Cov(X_p,X_1) & Cov(X_p,X_2) &\cdots & Cov(X_p,X_p) \\ \end{bmatrix} \\ &=(\sigma_{ij})_{p\times p}\xlongequal{def}\Sigma \end{aligned} D(X)=Cov(X,X)=E{[XE(X)][XE(X)])=Cov(X1,X1)Cov(X2,X1)Cov(Xp,X1)Cov(X1,X2)Cov(X2,X2)Cov(Xp,X2)Cov(X1,Xp)Cov(X2,Xp)Cov(Xp,Xp)=(σij)p×pdef Σ

称为 p p p维随机向量 X X X的协方差矩阵,简称为 X X X的协方差矩阵,称 ∣ C o v ( X , X ) ∣ |Cov(X,X)| Cov(X,X) X X X的广义方差,它是协方差矩阵的行列式之值。
C o v ( X , Y ) = [ C o v ( X 1 , Y 1 ) C o v ( X 1 , Y 2 ) ⋯ C o v ( X 1 , Y p ) C o v ( X 2 , Y 1 ) C o v ( X 2 , Y 2 ) ⋯ C o v ( X 2 , Y p ) ⋮ ⋮ ⋯ ⋮ C o v ( X p , Y 1 ) C o v ( X p , Y 2 ) ⋯ C o v ( X p , Y p ) ] Cov(X,Y)=\begin{bmatrix} Cov(X_1,Y_1) & Cov(X_1,Y_2) &\cdots & Cov(X_1,Y_p) \\ Cov(X_2,Y_1) & Cov(X_2,Y_2) &\cdots & Cov(X_2,Y_p) \\ \vdots & \vdots & \cdots & \vdots \\ Cov(X_p,Y_1) & Cov(X_p,Y_2) &\cdots & Cov(X_p,Y_p) \\ \end{bmatrix} Cov(X,Y)=Cov(X1,Y1)Cov(X2,Y1)Cov(Xp,Y1)Cov(X1,Y2)Cov(X2,Y2)Cov(Xp,Y2)Cov(X1,Yp)Cov(X2,Yp)Cov(Xp,Yp)
称为随机向量 X X X Y Y Y的协方差矩阵,若 C o v ( X , Y ) = 0 Cov(X,Y)=\boldsymbol{0} Cov(X,Y)=0,则称 X X X Y Y Y不相关。

A A A B B B为常数矩阵时,由定义可以推出协方差矩阵有如下性质:

  1. D ( A X ) = A D ( X ) A ⊤ = A Σ A ⊤ D(AX)=AD(X)A^\top=A\Sigma A^\top D(AX)=AD(X)A=AΣA
  2. C o v ( A X , B Y ) = A C o v ( X , Y ) B ⊤ Cov(AX,BY)=ACov(X,Y)B^\top Cov(AX,BY)=ACov(X,Y)B
  3. 协方差矩阵是一个半正定矩阵

随机向量的相关矩阵

若随机向量 X = ( X 1 , X 2 , ⋯   , X p ) ⊤ X=(X_1,X_2,\cdots,X_p)^\top X=(X1,X2,,Xp)的协方差矩阵存在,且每个分量的方差大于 0 0 0,则 X X X的相关矩阵定义为 R = ( r i j ) p × p R=(r_{ij})_{p\times p} R=(rij)p×p X X X的相关矩阵,其中:
r i j = C o v ( X i , Y j ) D ( X i ) D ( Y j ) = σ i j σ i i σ j j , i , j = 1 , 2 , ⋯   , p r_{ij}=\frac{Cov(X_i,Y_j)}{\sqrt{D(X_i)}\sqrt{D(Y_j)}}=\frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}},\quad i,j=1,2,\cdots,p rij=D(Xi) D(Yj) Cov(Xi,Yj)=σiiσjj σij,i,j=1,2,,p
这里 D ( X i ) = C o v ( X i , X i ) = σ i i D(X_i)=Cov(X_i,X_i)=\sigma_{ii} D(Xi)=Cov(Xi,Xi)=σii为随机变量 X i X_i Xi的方差,而 σ i i \sqrt{\sigma_{ii}} σii X i X_i Xi的标准差。

若记 V 1 2 = d i a g ( σ 11 , σ 22 , ⋯   , σ p p ) V^{\frac{1}{2}}=diag(\sqrt{\sigma_{11}}, \sqrt{\sigma_{22}}, \cdots, \sqrt{\sigma_{pp}}) V21=diag(σ11 ,σ22 ,,σpp )为标准差矩阵,则:
Σ = V 1 2 R V 1 2 \Sigma=V^{\frac{1}{2}}RV^{\frac{1}{2}} Σ=V21RV21

R = ( V 1 2 ) − 1 Σ ( V 1 2 ) − 1 R=(V^{\frac{1}{2}})^{-1}\Sigma (V^{\frac{1}{2}})^{-1} R=(V21)1Σ(V21)1

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小吴不会敲代码吧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值