多元统计分析笔记二——多元分布

一、Wishart分布

1.1 基本概念

Wishart分布是 χ 2 \chi^2 χ2分布的多元情况,假设有随机变量 ξ ∼ N ( 0 , Σ ) ∈ R p \xi\sim N(0,\Sigma)\in\bm R^{p} ξN(0,Σ)Rp,有 i i d iid iid样本 X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn,定义 X = ( X 1 , ⋯   , X n ) T ∈ R n × p \bm X=(X_1,\cdots,X_n)^T\in\bm R^{n\times p} X=(X1,,Xn)TRn×p,那么 M = X T X = ∑ i = 1 n X i X i T ∼ W p ( Σ , n ) (1) M=\bm X^T\bm X=\sum\limits_{i=1}^nX_iX_i^T\sim W_p(\Sigma, n)\tag1 M=XTX=i=1nXiXiTWp(Σ,n)(1)
n n n为自由度。

1.2 性质

  1. 如果 M ∼ W p ( Σ , n ) M\sim W_p(\Sigma, n) MWp(Σ,n),而且 B ∈ R p × q B\in\bm R^{p\times q} BRp×q,那么 B T M B ∼ W q ( B T Σ B , n ) (2) B^TMB\sim W_q(B^T\Sigma B, n)\tag2 BTMBWq(BTΣB,n)(2)
    B = Σ − 1 2 B=\Sigma^{-\frac{1}{2}} B=Σ21时, Σ − 1 2 M Σ − 1 2 ∼ W p ( I p , n ) \Sigma^{-\frac{1}{2}}M\Sigma^{-\frac{1}{2}}\sim W_p(I_p, n) Σ21MΣ21Wp(Ip,n)

  2. 如果 M ∼ W p ( Σ , n ) M\sim W_p(\Sigma, n) MWp(Σ,n),那么 E ( M ) = n Σ E(M)=n\Sigma E(M)=nΣ

  3. 如果 M i ∼ W p ( Σ , n i ) , i = 1 , ⋯   , k M_i\sim W_p(\Sigma, n_i),\quad i=1,\cdots,k MiWp(Σ,ni),i=1,,k,且相互独立,那么 M = ∑ i = 1 k M i ∼ W p ( Σ , n ) (3) M=\sum_{i=1}^kM_i\sim W_p(\Sigma, n)\tag3 M=i=1kMiWp(Σ,n)(3)
    其中 n = ∑ i = 1 k n i n=\sum\limits_{i=1}^kn_i n=i=1kni

  4. 如果 X ∈ R n × p \bm X\in\bm R^{n\times p} XRn×p,且 X i ∼ N ( 0 , Σ ) X_i\sim N(0,\Sigma) XiN(0,Σ),对于对称矩阵 C C C,当且仅当 C 2 = C C^2=C C2=C时, X T C X ∼ W ( Σ , r ) (4) \bm X^TC\bm X\sim W(\Sigma, r)\tag4 XTCXW(Σ,r)(4)
    其中, r = r a n k ( C ) = t r ( C ) r=rank(C)=tr(C) r=rank(C)=tr(C),由此可以得到 n S = X T ( I n − 1 n 1 1 T ) X ∼ W p ( Σ , n − 1 ) (5) nS=\bm X^T(I_n-\frac{1}{n}\bm1\bm1^T)\bm X\sim W_p(\Sigma, n-1)\tag5 nS=XT(Inn111T)XWp(Σ,n1)(5)
    其中 S S S是样本协方差阵

二、Hotelling T 2 T^2 T2分布

2.1 基本概念

对于 X ∈ R p X\in\bm R^p XRp,假设 X ∼ N ( 0 , I p ) X\sim N(0, I_p) XN(0,Ip) M ∼ W p ( I p , n ) M\sim W_p(I_p, n) MWp(Ip,n),那么 n X T M − 1 X ∼ T 2 ( p , n ) (6) n X^TM^{-1}X\sim T^2(p, n)\tag6 nXTM1XT2(p,n)(6)

2.2 结论

  1. 如果 X ∼ N ( μ , Σ ) X\sim N(\mu, \Sigma) XN(μ,Σ) M ∼ W p ( Σ , n ) M\sim W_p(\Sigma, n) MWp(Σ,n),而且 X X X M M M相互独立,那么有 n ( X − μ ) T M − 1 ( X − μ ) ∼ T 2 ( p , n ) (7) n(X-\mu)^TM^{-1}(X-\mu)\sim T^2(p, n)\tag7 n(Xμ)TM1(Xμ)T2(p,n)(7)
    结合 n S ∼ W p ( Σ , n − 1 ) nS\sim W_p(\Sigma, n-1) nSWp(Σ,n1) X ˉ ∼ N ( μ , 1 n Σ ) \bar{\bm X}\sim N(\mu, \frac{1}{n}\Sigma) XˉN(μ,n1Σ),并且 X ˉ \bar{\bm X} Xˉ S S S相互独立,可知 ( n − 1 ) ( X ˉ − μ ) T S − 1 ( X ˉ − μ ) ∼ T 2 ( p , n − 1 ) (8) (n-1)(\bar{\bm X}-\mu)^TS^{-1}(\bar{\bm X}-\mu)\sim T^2(p, n-1)\tag8 (n1)(Xˉμ)TS1(Xˉμ)T2(p,n1)(8)
  2. T 2 ( p , n ) = n p n − p + 1 F p , n − p + 1 (9) T^2(p, n)=\frac{np}{n-p+1}F_{p,n-p+1}\tag9 T2(p,n)=np+1npFp,np+1(9)

三、一个总体平均向量的检验

3.1 Σ \Sigma Σ已知

已知 X 1 , ⋯   , X n ∼ N p ( μ , Σ ) X_1,\cdots,X_n\sim N_p(\mu, \Sigma) X1,,XnNp(μ,Σ),令 X ˉ = ∑ i = 1 n X i \bar{\bm X}=\sum\limits_{i=1}^nX_i Xˉ=i=1nXi S = 1 n ∑ i = 1 n ( X i − X ˉ ) ( X i − X ˉ ) T S=\frac{1}{n}\sum\limits_{i=1}^n(X_i-\bar{\bm X})(X_i-\bar{\bm X})^T S=n1i=1n(XiXˉ)(XiXˉ)T,对于检验 H 0 : μ = μ 0 V S H 1 : μ ≠ μ 0 (10) H_0:\mu=\mu_0 \quad VS\quad H_1:\mu\ne\mu_0\tag{10} H0:μ=μ0VSH1:μ=μ0(10)
由于 Σ \Sigma Σ已知,所以可用 T 2 = n ( X ˉ − μ 0 ) T Σ − 1 ( X ˉ − μ 0 ) ∼ χ p 2 (11) T^2=n(\bar{\bm X}-\mu_0)^T\Sigma^{-1}(\bar{\bm X}-\mu_0)\sim\chi^2_p\tag{11} T2=n(Xˉμ0)TΣ1(Xˉμ0)χp2(11)
作为检验统计量

3.2 Σ \Sigma Σ未知

对于检验 ( 10 ) (10) (10),当 Σ \Sigma Σ未知时,可用 ( n − 1 ) − p + 1 ( n − 1 ) p T 2 ∼ F p , n − p (12) \frac{(n-1)-p+1}{(n-1)p}T^2\sim F_{p, n-p}\tag{12} (n1)p(n1)p+1T2Fp,np(12)作为检验统计量,其中, T 2 = ( n − 1 ) ( X ˉ − μ 0 ) T S − 1 ( X ˉ − μ 0 ) T^2=(n-1)(\bar{\bm X}-\mu_0)^TS^{-1}(\bar{\bm X}-\mu_0) T2=(n1)(Xˉμ0)TS1(Xˉμ0)

四、两个总体平均向量的检验

4.1 协方差相等且已知

对于 X 1 , ⋯   , X n ∼ N p ( μ 1 , Σ ) X_1,\cdots,X_n\sim N_p(\mu_1, \Sigma) X1,,XnNp(μ1,Σ) Y 1 , ⋯   , Y m ∼ N p ( μ 2 , Σ ) Y_1,\cdots,Y_m\sim N_p(\mu_2, \Sigma) Y1,,YmNp(μ2,Σ),所有样本都相互独立,而且 n , m > p n, m\gt p n,m>p。令 X ˉ \bar{\bm X} Xˉ Y ˉ \bar{\bm Y} Yˉ表示均值, S X S_X SX S Y S_Y SY表示对应的协方差,那么对于假设 H 0 : μ 1 = μ 2 V S H 1 : μ 1 ≠ μ 2 (13) H_0: \mu_1=\mu_2\quad VS \quad H_1:\mu_1\ne\mu_2\tag{13} H0:μ1=μ2VSH1:μ1=μ2(13)
( 13 ) (13) (13)的假设下, X ˉ − Y ˉ ∼ N ( 0 , n + m n m Σ ) \bar{\bm X}-\bar{\bm Y}\sim N(\bm0,\frac{n+m}{nm}\Sigma) XˉYˉN(0,nmn+mΣ),进而可用 T 2 = n m n + m ( X ˉ − Y ˉ ) T Σ − 1 ( X ˉ − Y ˉ ) ∼ χ p 2 (14) T^2=\frac{nm}{n+m}(\bar{\bm X}-\bar{\bm Y})^T\Sigma^{-1}(\bar{\bm X}-\bar{\bm Y})\sim\chi^2_p\tag{14} T2=n+mnm(XˉYˉ)TΣ1(XˉYˉ)χp2(14)作为检验统计量

4.2 协方差相等但未知

在这种情况下,用 S X , S Y S_X, S_Y SX,SY来估计协方差,易得 n S X + m S Y ∼ W p ( Σ , n + m − 2 ) (15) nS_X+mS_Y\sim W_p(\Sigma, n+m-2)\tag{15} nSX+mSYWp(Σ,n+m2)(15)
S = ( n + m ) − 1 ( n S X + m S Y ) S=(n+m)^{-1}(nS_X+mS_Y) S=(n+m)1(nSX+mSY),则 ( n + m ) S ∼ W p ( Σ , n + m − 2 ) (n+m)S\sim W_p(\Sigma, n+m-2) (n+m)SWp(Σ,n+m2),另外, S S S X ˉ − Y ˉ \bar{\bm X}-\bar{\bm Y} XˉYˉ相互独立,所以在 ( 13 ) (13) (13)的假设下, n m ( n + m − 2 ) ( n + m ) 2 ( X ˉ − Y ˉ ) T S − 1 ( X ˉ − Y ˉ ) ∼ T 2 ( p , n + m − 2 ) (16) \frac{nm(n+m-2)}{(n+m)^2}(\bar{\bm X}-\bar{\bm Y})^TS^{-1}(\bar{\bm X}-\bar{\bm Y})\sim T^2(p, n+m-2)\tag{16} (n+m)2nm(n+m2)(XˉYˉ)TS1(XˉYˉ)T2(p,n+m2)(16)
进而有 n m ( n + m − p − 1 ) p ( n + m ) 2 ( X ˉ − Y ˉ ) T S − 1 ( X ˉ − Y ˉ ) ∼ F p , n + m − p − 1 (17) \frac{nm(n+m-p-1)}{p(n+m)^2}(\bar{\bm X}-\bar{\bm Y})^TS^{-1}(\bar{\bm X}-\bar{\bm Y})\sim F_{p, n+m-p-1}\tag{17} p(n+m)2nm(n+mp1)(XˉYˉ)TS1(XˉYˉ)Fp,n+mp1(17)

4.3 协方差不相等但已知

对于 X 1 , ⋯   , X n ∼ N p ( μ 1 , Σ 1 ) X_1,\cdots,X_n\sim N_p(\mu_1, \Sigma_1) X1,,XnNp(μ1,Σ1) Y 1 , ⋯   , Y m ∼ N p ( μ 2 , Σ 2 ) Y_1,\cdots,Y_m\sim N_p(\mu_2, \Sigma_2) Y1,,YmNp(μ2,Σ2),所有样本都相互独立,而且 n , m > p n, m\gt p n,m>p

( 13 ) (13) (13)的假设下, X ˉ − Y ˉ ∼ N ( 0 , Σ 1 n + Σ 2 m ) \bar{\bm X}-\bar{\bm Y}\sim N(\bm0,\frac{\Sigma_1}{n}+\frac{\Sigma_2}{m}) XˉYˉN(0,nΣ1+mΣ2),进而可用 T 2 = ( X ˉ − Y ˉ ) T ( Σ 1 n + Σ 2 m ) − 1 ( X ˉ − Y ˉ ) ∼ χ p 2 (18) T^2=(\bar{\bm X}-\bar{\bm Y})^T(\frac{\Sigma_1}{n}+\frac{\Sigma_2}{m})^{-1}(\bar{\bm X}-\bar{\bm Y})\sim\chi^2_p\tag{18} T2=(XˉYˉ)T(nΣ1+mΣ2)1(XˉYˉ)χp2(18)作为检验统计量

4.3 协方差不相等且未知

4.3.1 n = m n=m n=m

Z i = X i − Y i Z_i=X_i-Y_i Zi=XiYi,进而有 Z ˉ = X ˉ − Y ˉ \bar{\bm Z}=\bar{\bm X}-\bar{\bm Y} Zˉ=XˉYˉ S Z S_Z SZ为相应的样本协方差,在 ( 13 ) (13) (13)的假设下, Z ˉ ∼ N ( 0 , Σ 1 + Σ 2 n ) (19) \bar{\bm Z}\sim N(\bm0, \frac{\Sigma_1+\Sigma_2}{n})\tag{19} ZˉN(0,nΣ1+Σ2)(19)
而且 n S Z ∼ W p ( Σ 1 + Σ 2 , n − 1 ) (20) nS_Z\sim W_p(\Sigma_1+\Sigma_2, n-1)\tag{20} nSZWp(Σ1+Σ2,n1)(20)
所以有 ( n − 1 ) Z ˉ T ( S Z ) − 1 Z ˉ ∼ T 2 ( p , n − 1 ) (21) (n-1)\bar{\bm Z}^T(S_Z)^{-1}\bar{\bm Z}\sim T^2(p, n-1)\tag{21} (n1)ZˉT(SZ)1ZˉT2(p,n1)(21)
进而可用统计量 n − p p Z ˉ T ( S Z ) − 1 Z ˉ ∼ F p , n − p (22) \frac{n-p}{p}\bar{\bm Z}^T(S_Z)^{-1}\bar{\bm Z}\sim F_{p, n-p}\tag{22} pnpZˉT(SZ)1ZˉFp,np(22)

4.3.2 n ≠ m n\ne m n=m

在这里插入图片描述
在这里插入图片描述

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值